Journal of Materials Science

, Volume 47, Issue 2, pp 746–753 | Cite as

Hydrothermal synthesis of quasi-monodisperse AWO4 (A = Ca, Sr, and Ba) microspheres

  • Hongli Pan
  • Mirabbos Hojamberdiev
  • Gangqiang Zhu


In this study, quasi-monodisperse AWO4 (A = Ca, Sr, and Ba) microspheres were fabricated by a facile hydrothermal route at 180 °C for 8 h in the presence of citric acid. The as-synthesized AWO4 powders were characterized by X-ray powder diffraction (XRD), scanning electron microscopy, transmission electron microscopy and photoluminescence spectroscopy. The XRD results revealed that the hydrothermally formed AWO4 powders presented a scheelite-type tetragonal structure, and the formation of a secondary phase was not observed. The SEM and TEM observations demonstrated that the AWO4 powders with uniform sphere-like morphologies could be hydrothermally obtained at 180 °C for 8 h without the use of surfactants. The growth process of quasi-monodisperse BaWO4 microspheres, as a representative of AWO4, was investigated as a function of hydrothermal processing time, and a possible formation mechanism was proposed. The room temperature photoluminescence properties of AWO4 powders were studied using an excitation wavelength of 350 nm. The positions of the PL emission peaks were not considerably altered, implying that the energy band gap relating to the blue emission was not much affected by the variation in chemical composition of AWO4 (A = Ca, Sr, and Ba) microspheres. The obtained quasi-monodisperse AWO4 microspheres will be potential candidates for a broad range of technological applications, as phosphors, luminescent materials, photocatalysts, etc.


Citric Acid Energy Dispersive Spectroscopy CaWO4 SrWO4 BaWO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sczancoski JC, Bomio MDR, Cavalcante LS, Joya MR, Pizani PS, Varela JA, Longo E, Li MS, Andrés JA (2009) J Phys Chem C 113:5812CrossRefGoogle Scholar
  2. 2.
    Marques VS, Cavalcante LS, Sczancoski JC, Alcântara AFP, Orlandi MO, Moraes E, Longo E, Varela JA, Li MS, Santos MRMC (2010) Cryst Growth Des 10:4752CrossRefGoogle Scholar
  3. 3.
    Yin Y, Gao Y, Sun Y, Zhou B, Ma L, Wu X, Zhang X (2010) Mater Lett 64:602CrossRefGoogle Scholar
  4. 4.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893CrossRefGoogle Scholar
  5. 5.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025CrossRefGoogle Scholar
  6. 6.
    Chen S-J, Li J, Chen X-T, Hong J-M, Xue Z, You X-Z (2003) J Cryst Growth 253:361CrossRefGoogle Scholar
  7. 7.
    Shi H, Qi L, Ma J, Cheng H (2003) J Am Chem Soc 125:3450CrossRefGoogle Scholar
  8. 8.
    Liao H-W, Wang Y-F, Liu X-M, Li Y-D, Qian Y-T (2000) Chem Mater 12:2819CrossRefGoogle Scholar
  9. 9.
    Zhang Q, Yao W-T, Chen X, Zhu L, Fu Y, Zhang G, Sheng L, Yu S-H (2007) Cryst Growth Des 7:1423CrossRefGoogle Scholar
  10. 10.
    Treadaway MJ, Powell RC (1975) Phys Rev B 11:862CrossRefGoogle Scholar
  11. 11.
    Li L, Su Y, Li G (2007) Appl Phys Lett 90:054105CrossRefGoogle Scholar
  12. 12.
    Gürman E, Daniels E, King JS (1971) J Chem Phys 55:1093CrossRefGoogle Scholar
  13. 13.
    Zhuang H, Yue Z, Meng S, Zhao F, Li L (2008) J Am Ceram Soc 91:3738CrossRefGoogle Scholar
  14. 14.
    Shan Z, Wang Y, Ding H, Huang F (2009) J Mol Catal A 302:54CrossRefGoogle Scholar
  15. 15.
    Cavalcante LS, Sczancoski JC, Lima LF Jr, Espinosa JWM, Pizani PS, Varela JA, Longo E (2009) Cryst Growth Des 9:1002CrossRefGoogle Scholar
  16. 16.
    Cavalli E, Boutinaud P, Mahiou R, Bettinelli M, Dorenbos P (2010) Inorg Chem 49:4916CrossRefGoogle Scholar
  17. 17.
    Liao J, Qiu B, Wen H-R, Li Y, Hong R, You H (2011) J Mater Sci 46:1184. doi: 10.1007/s10853-010-4891-8 CrossRefGoogle Scholar
  18. 18.
    Cho W-S, Yoshimura M (1997) J Am Ceram Soc 80:2199CrossRefGoogle Scholar
  19. 19.
    Zhang F, Sfeir MY, Misewich JA, Wong SS (2008) Chem Mater 20:5500CrossRefGoogle Scholar
  20. 20.
    He J, Han M, Shen X, Xu Z (2008) J Cryst Growth 310:4581CrossRefGoogle Scholar
  21. 21.
    Shi H, Qi L, Ma J, Wu N (2005) Adv Funct Mater 15:442CrossRefGoogle Scholar
  22. 22.
    Liao J, Qiu B, Wen H, Chen J, You W, Liu L (2009) J Alloys Compd 487:758CrossRefGoogle Scholar
  23. 23.
    Wang W-S, Zhen L, Xu C-Y, Yang L, Shao W-Z (2008) J Phys Chem C 112:19390CrossRefGoogle Scholar
  24. 24.
    Xie B, Wu Y, Jiang Y, Li F, Wu J, Yuan S, Yu W, Qian Y (2002) J Cryst Growth 235:283CrossRefGoogle Scholar
  25. 25.
    Jiang X, Ma J, Yao Y, Sun Y, Liu Z, Ren Y, Liu J, Lin B (2009) Ceram Int 35:3525CrossRefGoogle Scholar
  26. 26.
    Thongtem T, Phuruangrat A, Thongtem S (2008) Appl Surf Sci 254:7581CrossRefGoogle Scholar
  27. 27.
    Dong F-Q, Wu Q-S, Ding Y-P (2009) J Alloys Compd 476:571CrossRefGoogle Scholar
  28. 28.
    Cavalcante LS, Sczancoski JC, Espinosa JWM, Varela JA, Pizani PS, Longo E (2009) J Alloys Compd 474:195CrossRefGoogle Scholar
  29. 29.
    Luo Z, Li H, Xia J, Zhu W, Guo J, Zhang B (2007) Mater Lett 61:1845CrossRefGoogle Scholar
  30. 30.
    Su Y, Li G, Xue Y, Li L (2007) J Phys Chem C 111:6684CrossRefGoogle Scholar
  31. 31.
    Chen D, Shen G, Tang K, Zheng H, Qian Y (2003) Mater Res Bull 38:1783CrossRefGoogle Scholar
  32. 32.
    Sun L, Cao M, Wang Y, Sun G, Hu C (2006) J Cryst Growth 289:231CrossRefGoogle Scholar
  33. 33.
    Liu Y, Chu Y (2005) Mater Chem Phys 92:59CrossRefGoogle Scholar
  34. 34.
    Afanasiev P (2007) Mater Lett 61:4622CrossRefGoogle Scholar
  35. 35.
    Sczancoski JC, Cavalcante LS, Joya MR, Espinosa JWM, Pizani PS, Varela JA, Longo E (2009) J Colloid Interface Sci 330:227CrossRefGoogle Scholar
  36. 36.
    Wang J, Xu Y, Hojamberdiev M (2009) J Alloys Compd 481:896CrossRefGoogle Scholar
  37. 37.
    Wang Z, Wang Y, Li Y, Liu B (2010) J Electrochem Soc 157:J125CrossRefGoogle Scholar
  38. 38.
    Siqueira KPF, Moreira RL, Valadares M, Dias A (2010) J Mater Sci 45:6083. doi: 10.1007/s10853-010-4694-y CrossRefGoogle Scholar
  39. 39.
    Zhang H, Yang D, Li S, Ma X, Ji Y, Xu J, Que D (2005) Mater Lett 59:1696CrossRefGoogle Scholar
  40. 40.
    Wang W–W (2008) Mater Res Bull 43:2055CrossRefGoogle Scholar
  41. 41.
    Yang Z, Liu Q-H, Yang L (2007) Mater Res Bull 42:221CrossRefGoogle Scholar
  42. 42.
    Luo Z, Li H, Xia J, Zhu W, Guo J, Zhang B (2007) J Cryst Growth 300:523CrossRefGoogle Scholar
  43. 43.
    Grasser R, Scharmann A (1976) J Lumin 12–13:473CrossRefGoogle Scholar
  44. 44.
    Grasser R, Scharmann A, Strack K-R (1982) J Lumin 27:263CrossRefGoogle Scholar
  45. 45.
    Sczancoski JC, Cavalcante LS, Marana NL, da Silva RO, Tranquilin RL, Joya MR, Pizani PS, Varela JA, Sambrano JR, Siu Li M, Longo E, Andrés J (2010) Curr Appl Phys 10:614CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hongli Pan
    • 1
  • Mirabbos Hojamberdiev
    • 2
  • Gangqiang Zhu
    • 3
  1. 1.Department of PhysicsShaanxi University of TechnologyHanzhongPeople’s Republic of China
  2. 2.Shaanxi Key Laboratory of Nanomaterials and NanotechnologyXi’an University of Architecture and TechnologyXi’anPeople’s Republic of China
  3. 3.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations