Skip to main content

Advertisement

Log in

Enhancement of thermal stability of TiO2 nanowires embedded in anodic aluminum oxide template

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Titania (TiO2) nanowires with diameters of 20, 50, and 80 nm were successfully synthesized via the template-assistant method. The TiO2 nanowires embedded in anodic aluminum oxide template have extremely high crystallization and anatase-to-rutile phase transition temperatures than that of the free-state TiO2 powders, and the thermal stability of embedded TiO2 nanowires depends on the diameter of the templates. The growth and nucleation activation energy of rutile in 20 nm nanowires are determined to be \( E_{\rm{g}} \) = 2.8 ± 0.2 eV and \( E_{\rm{n}} \) = 2.7 ± 0.2 eV, respectively, much higher than that of the free-state TiO2 powders with \( E_{\rm{g}} \) = 1.6 ± 0.2 eV and \( E_{\rm{n}} \) = 1.9 ± 0.2 eV. The pressure induced by the difference of thermal expansion coefficient between the TiO2 and aluminum oxide acts as an effective barrier that prevents phase transition, resulting in the enhancement of the TiO2 structural stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353

    Article  CAS  Google Scholar 

  2. Bradford MCJ, Vannice MA (1996) Appl Catal A 142:73

    Article  CAS  Google Scholar 

  3. Thompson TL, Yates JT (2006) Chem Rev 106:4428

    Article  CAS  Google Scholar 

  4. Yeh YC, Tseng TT, Chang DA (1989) J Am Ceram Soc 2:1472

    Article  Google Scholar 

  5. Ketrom L (1989) Am Ceram Soc Bull 68:860

    Google Scholar 

  6. O’Regan B, Gratzel M (1991) Nature 353:737

    Article  Google Scholar 

  7. Liu YJ, Claus RO (1997) J Am Chem Soc 119:5273

    Article  CAS  Google Scholar 

  8. Zhu JF, Zheng W, He B, Zhang JL, Anpo M (2004) J Mol Catal A 216:35

    Article  CAS  Google Scholar 

  9. Gerscher H, Heller A (1991) J Phys Chem 95:5261

    Article  Google Scholar 

  10. Ovenstone J, Yanagisawa K (1999) Chem Mater 11:2770

    Article  CAS  Google Scholar 

  11. Wang Z, Deng X (2007) Mater Sci Eng B 140:109

    Article  CAS  Google Scholar 

  12. Gao X, Wachs Catal IE (1999) Today 51:233

    Article  CAS  Google Scholar 

  13. Chen B, Zhang H, Gilbert B, Banfield JF (2007) Phys Rev Lett 98:106103

    Article  Google Scholar 

  14. Aronson BJ, Blanford CF, Stein A (1997) Chem Mater 9:2842

    Article  CAS  Google Scholar 

  15. Wang B, Ouyang G, Yang YH, Yang GW (2007) Appl Phys Lett 90:121905

    Article  Google Scholar 

  16. Mei QS, Wang SC, Cong HT, Jin ZH, Lu K (2005) Acta Mater 53:1059

    Article  CAS  Google Scholar 

  17. Wang Y, Ye C, Wang G, Zhang L, Liu Y, Zhao Z (2003) Appl Phys Lett 82:4253

    Article  CAS  Google Scholar 

  18. Wang XW, Fei GT, Wu B, Chen L, Chu ZQ (2006) Phys Lett A 359:220

    Article  Google Scholar 

  19. Starink MJ (2003) Thermochim Acta 404:163

    Article  CAS  Google Scholar 

  20. Zhang H, Banfield JF (2005) Chem Mater 17:3421

    Article  CAS  Google Scholar 

  21. Spaepen F, Turnbull D (1979) Scr Metall 13:149

    Article  CAS  Google Scholar 

  22. Jagtap N, Bhagwat M, Awati P, Ramaswamy V (2005) Thermochem Acta 427:37

    Article  CAS  Google Scholar 

  23. Shackelford JF, Alexander W (2001) CRC materials science and engineering handbook, 3rd edn. CRC, Boca Raton

    Google Scholar 

  24. Chen LX, Rajh T, Jager W, Nedeljkovic J, Thurnauer MC (1999) J Synchrotron Rad 6:445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X. Enhancement of thermal stability of TiO2 nanowires embedded in anodic aluminum oxide template. J Mater Sci 47, 739–745 (2012). https://doi.org/10.1007/s10853-011-5848-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5848-2

Keywords

Navigation