Journal of Materials Science

, Volume 47, Issue 2, pp 739–745 | Cite as

Enhancement of thermal stability of TiO2 nanowires embedded in anodic aluminum oxide template



Titania (TiO2) nanowires with diameters of 20, 50, and 80 nm were successfully synthesized via the template-assistant method. The TiO2 nanowires embedded in anodic aluminum oxide template have extremely high crystallization and anatase-to-rutile phase transition temperatures than that of the free-state TiO2 powders, and the thermal stability of embedded TiO2 nanowires depends on the diameter of the templates. The growth and nucleation activation energy of rutile in 20 nm nanowires are determined to be \( E_{\rm{g}} \) = 2.8 ± 0.2 eV and \( E_{\rm{n}} \) = 2.7 ± 0.2 eV, respectively, much higher than that of the free-state TiO2 powders with \( E_{\rm{g}} \) = 1.6 ± 0.2 eV and \( E_{\rm{n}} \) = 1.9 ± 0.2 eV. The pressure induced by the difference of thermal expansion coefficient between the TiO2 and aluminum oxide acts as an effective barrier that prevents phase transition, resulting in the enhancement of the TiO2 structural stability.


TiO2 Rutile Phase Transition Temperature Rutile Phase Anodic Aluminum Oxide Template 


  1. 1.
    Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) Adv Mater 15:353CrossRefGoogle Scholar
  2. 2.
    Bradford MCJ, Vannice MA (1996) Appl Catal A 142:73CrossRefGoogle Scholar
  3. 3.
    Thompson TL, Yates JT (2006) Chem Rev 106:4428CrossRefGoogle Scholar
  4. 4.
    Yeh YC, Tseng TT, Chang DA (1989) J Am Ceram Soc 2:1472CrossRefGoogle Scholar
  5. 5.
    Ketrom L (1989) Am Ceram Soc Bull 68:860Google Scholar
  6. 6.
    O’Regan B, Gratzel M (1991) Nature 353:737CrossRefGoogle Scholar
  7. 7.
    Liu YJ, Claus RO (1997) J Am Chem Soc 119:5273CrossRefGoogle Scholar
  8. 8.
    Zhu JF, Zheng W, He B, Zhang JL, Anpo M (2004) J Mol Catal A 216:35CrossRefGoogle Scholar
  9. 9.
    Gerscher H, Heller A (1991) J Phys Chem 95:5261CrossRefGoogle Scholar
  10. 10.
    Ovenstone J, Yanagisawa K (1999) Chem Mater 11:2770CrossRefGoogle Scholar
  11. 11.
    Wang Z, Deng X (2007) Mater Sci Eng B 140:109CrossRefGoogle Scholar
  12. 12.
    Gao X, Wachs Catal IE (1999) Today 51:233CrossRefGoogle Scholar
  13. 13.
    Chen B, Zhang H, Gilbert B, Banfield JF (2007) Phys Rev Lett 98:106103CrossRefGoogle Scholar
  14. 14.
    Aronson BJ, Blanford CF, Stein A (1997) Chem Mater 9:2842CrossRefGoogle Scholar
  15. 15.
    Wang B, Ouyang G, Yang YH, Yang GW (2007) Appl Phys Lett 90:121905CrossRefGoogle Scholar
  16. 16.
    Mei QS, Wang SC, Cong HT, Jin ZH, Lu K (2005) Acta Mater 53:1059CrossRefGoogle Scholar
  17. 17.
    Wang Y, Ye C, Wang G, Zhang L, Liu Y, Zhao Z (2003) Appl Phys Lett 82:4253CrossRefGoogle Scholar
  18. 18.
    Wang XW, Fei GT, Wu B, Chen L, Chu ZQ (2006) Phys Lett A 359:220CrossRefGoogle Scholar
  19. 19.
    Starink MJ (2003) Thermochim Acta 404:163CrossRefGoogle Scholar
  20. 20.
    Zhang H, Banfield JF (2005) Chem Mater 17:3421CrossRefGoogle Scholar
  21. 21.
    Spaepen F, Turnbull D (1979) Scr Metall 13:149CrossRefGoogle Scholar
  22. 22.
    Jagtap N, Bhagwat M, Awati P, Ramaswamy V (2005) Thermochem Acta 427:37CrossRefGoogle Scholar
  23. 23.
    Shackelford JF, Alexander W (2001) CRC materials science and engineering handbook, 3rd edn. CRC, Boca RatonGoogle Scholar
  24. 24.
    Chen LX, Rajh T, Jager W, Nedeljkovic J, Thurnauer MC (1999) J Synchrotron Rad 6:445CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations