Journal of Materials Science

, Volume 47, Issue 2, pp 677–684 | Cite as

Synthesis and characterization of photoactive polyurethane elastomers with 2,3-dihydroxypyridine in the main chain

  • Stefan Oprea
  • Violeta Otilia Potolinca


Photoactive polyurethane elastomers with pyridine derivatives in the polymer backbone were synthesized by chain-extending isocyanate end-capped prepolymers with 2,3-dihydroxypyridine. The isocyanate-terminated prepolymers were obtained from poly(tetramethylene oxide) glycol of molecular weight 1400 (Terathane 1400) and 1,6-hexamethylene diisocyanate. The properties of the linear heterocyclic polyurethane were compared with properties of the crosslinked heterocyclic polyurethane obtained by chain extension with various crosslinkers. Heterocyclic polyurethane elastomers were characterized using Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), dynamic mechanical analysis (DMA), contact angle measurements, and mechanical analysis. Static mechanical measurements showed greater elongation and tensile strength for polyurethanes with a lower content of heterocyclic groups in the hard segment. The static contact angles of the cast films of these polymers indicated that the nature of the hard segment influences the surface polarity. The dynamic mechanical spectra revealed that linear polymers have two transition temperatures as results from a clear phase separation caused by high-intermolecular hydrogen bonds in the regions of pyridine units and urethane groups. Polyurethane elastomer films with pyridine moieties in the main chain form a photosensitive material. If stored in laboratory conditions (light, ambient air atmosphere), the color of the films changes from white to black. These photo-induced structural changes are studied by H NMR measurements.


Contact Angle Polyurethane Urethane Dynamic Mechanical Analysis Pyridine Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author gratefully acknowledges Dr. Mariana Cristea for her assistance with the DMA measurements.


  1. 1.
    Oertel S (1993) Polyurethane hand book. Hanser/Gardner Publications, Inc., CincinnatiGoogle Scholar
  2. 2.
    Biemond GJE, Gaymans RJ (2010) J Mater Sci 45:158. doi: 10.1007/s10853-009-3911-z CrossRefGoogle Scholar
  3. 3.
    Varkey EC, Sreekumar K (2010) J Mater Sci 45:1912. doi: 10.1007/s10853-009-4177-1 CrossRefGoogle Scholar
  4. 4.
    Oprea S (2011) J Mater Sci 46:2251. doi: 10.1007/s10853-010-5064-5 CrossRefGoogle Scholar
  5. 5.
    Kuriyagawa M, Kawamura T, Hayashi S, Nitta K (2011) J Mater Sci 46:1264. doi: 10.1007/s10853-010-4910-9 CrossRefGoogle Scholar
  6. 6.
    Oprea S (2010) J Am Oil Chem Soc 87:313CrossRefGoogle Scholar
  7. 7.
    Liao L, Cao Q, Liao H (2010) J Mater Sci 45:2436. doi: 10.1007/s10853-010-4211-3 CrossRefGoogle Scholar
  8. 8.
    Salipira KL, Krause RW, Mamba BB, Malefetse TJ, Cele LM, Durbach SH (2008) Mater Chem Phys 111:218CrossRefGoogle Scholar
  9. 9.
    Chen S, Hu J, Yuen CW, Chan L (2010) Polym Int 59:529CrossRefGoogle Scholar
  10. 10.
    Chen S, Hu J, Zhuo H, Chen S (2011) J Mater Sci 46:5294. doi: 10.1007/s10853-011-5469-9 CrossRefGoogle Scholar
  11. 11.
    Sriram V, Mahesh GN, Jeevan RG, Radhakrishnan G (2000) Macromol Chem Phys 201:2799CrossRefGoogle Scholar
  12. 12.
    Monkman AP, Palsson LO, Higgins RWT, Wang C, Bryce MR, Batsanov AS, Howard JAK (2002) J Am Chem Soc 124:6049CrossRefGoogle Scholar
  13. 13.
    Liaw DJ, Wang KL, Chang FC, Lee KR, Lai JY (2007) J Polym Sci: Polym Chem 45:2367CrossRefGoogle Scholar
  14. 14.
    Alam M, Ashraf SM, Ahmad S (2008) J Polym Res 15:343CrossRefGoogle Scholar
  15. 15.
    Vaganova E, Yitzchaik S (2004) Macromol Symp 207:95CrossRefGoogle Scholar
  16. 16.
    Smets J, Maes G (1991) Chem Phys Lett 187:532CrossRefGoogle Scholar
  17. 17.
    Kwiatkowski JS, Bartlett RJ, Person WB (1988) J Am Chem Soc 110:2353CrossRefGoogle Scholar
  18. 18.
    Prabhu AAM, Siva S, Sankaranarayanan RK, Rajendiran N (2010) J Fluoresc 20:43CrossRefGoogle Scholar
  19. 19.
    Ichimura K (1999) Photochromic Polymers. In: Crano J, Guglielmetti R (eds) Organic photochromic and thermochromic compounds volume 2: physicochemical studies, biological applications, and thermochromism. Kluwer Academic/Plenum Publishers, New York, p 9Google Scholar
  20. 20.
    Delaire JA, Nakatani K (2000) Chem Rev 100:1817CrossRefGoogle Scholar
  21. 21.
    Ercole F, Davis TP, Evans RA (2010) Polym Chem 1:37CrossRefGoogle Scholar
  22. 22.
    Chen S, Hu J, Zhuo H, Yuen C, Chan L (2010) Polymer 51:240CrossRefGoogle Scholar
  23. 23.
    Ambrozic G, Mavri J, Zigon M (2002) Chem Phys 203:439Google Scholar
  24. 24.
    Wu J, Ge Q, Mather PT (2010) Macromolecules 43:7637CrossRefGoogle Scholar
  25. 25.
    Alves P, Coelho JFJ, Haack J, Rota A, Bruinink A, Gil MH (2009) Eur Polym J 45:1412CrossRefGoogle Scholar
  26. 26.
    Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1711CrossRefGoogle Scholar
  27. 27.
    Chvedov D, Arnold A (2004) Ind Eng Chem Res 43:1451CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania

Personalised recommendations