Skip to main content
Log in

Synthesis and characterization of photoactive polyurethane elastomers with 2,3-dihydroxypyridine in the main chain

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photoactive polyurethane elastomers with pyridine derivatives in the polymer backbone were synthesized by chain-extending isocyanate end-capped prepolymers with 2,3-dihydroxypyridine. The isocyanate-terminated prepolymers were obtained from poly(tetramethylene oxide) glycol of molecular weight 1400 (Terathane 1400) and 1,6-hexamethylene diisocyanate. The properties of the linear heterocyclic polyurethane were compared with properties of the crosslinked heterocyclic polyurethane obtained by chain extension with various crosslinkers. Heterocyclic polyurethane elastomers were characterized using Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), dynamic mechanical analysis (DMA), contact angle measurements, and mechanical analysis. Static mechanical measurements showed greater elongation and tensile strength for polyurethanes with a lower content of heterocyclic groups in the hard segment. The static contact angles of the cast films of these polymers indicated that the nature of the hard segment influences the surface polarity. The dynamic mechanical spectra revealed that linear polymers have two transition temperatures as results from a clear phase separation caused by high-intermolecular hydrogen bonds in the regions of pyridine units and urethane groups. Polyurethane elastomer films with pyridine moieties in the main chain form a photosensitive material. If stored in laboratory conditions (light, ambient air atmosphere), the color of the films changes from white to black. These photo-induced structural changes are studied by H NMR measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Oertel S (1993) Polyurethane hand book. Hanser/Gardner Publications, Inc., Cincinnati

    Google Scholar 

  2. Biemond GJE, Gaymans RJ (2010) J Mater Sci 45:158. doi:10.1007/s10853-009-3911-z

    Article  CAS  Google Scholar 

  3. Varkey EC, Sreekumar K (2010) J Mater Sci 45:1912. doi:10.1007/s10853-009-4177-1

    Article  Google Scholar 

  4. Oprea S (2011) J Mater Sci 46:2251. doi:10.1007/s10853-010-5064-5

    Article  CAS  Google Scholar 

  5. Kuriyagawa M, Kawamura T, Hayashi S, Nitta K (2011) J Mater Sci 46:1264. doi:10.1007/s10853-010-4910-9

    Article  CAS  Google Scholar 

  6. Oprea S (2010) J Am Oil Chem Soc 87:313

    Article  CAS  Google Scholar 

  7. Liao L, Cao Q, Liao H (2010) J Mater Sci 45:2436. doi:10.1007/s10853-010-4211-3

    Article  CAS  Google Scholar 

  8. Salipira KL, Krause RW, Mamba BB, Malefetse TJ, Cele LM, Durbach SH (2008) Mater Chem Phys 111:218

    Article  CAS  Google Scholar 

  9. Chen S, Hu J, Yuen CW, Chan L (2010) Polym Int 59:529

    Article  CAS  Google Scholar 

  10. Chen S, Hu J, Zhuo H, Chen S (2011) J Mater Sci 46:5294. doi:10.1007/s10853-011-5469-9

    Article  CAS  Google Scholar 

  11. Sriram V, Mahesh GN, Jeevan RG, Radhakrishnan G (2000) Macromol Chem Phys 201:2799

    Article  CAS  Google Scholar 

  12. Monkman AP, Palsson LO, Higgins RWT, Wang C, Bryce MR, Batsanov AS, Howard JAK (2002) J Am Chem Soc 124:6049

    Article  CAS  Google Scholar 

  13. Liaw DJ, Wang KL, Chang FC, Lee KR, Lai JY (2007) J Polym Sci: Polym Chem 45:2367

    Article  CAS  Google Scholar 

  14. Alam M, Ashraf SM, Ahmad S (2008) J Polym Res 15:343

    Article  CAS  Google Scholar 

  15. Vaganova E, Yitzchaik S (2004) Macromol Symp 207:95

    Article  CAS  Google Scholar 

  16. Smets J, Maes G (1991) Chem Phys Lett 187:532

    Article  CAS  Google Scholar 

  17. Kwiatkowski JS, Bartlett RJ, Person WB (1988) J Am Chem Soc 110:2353

    Article  CAS  Google Scholar 

  18. Prabhu AAM, Siva S, Sankaranarayanan RK, Rajendiran N (2010) J Fluoresc 20:43

    Article  CAS  Google Scholar 

  19. Ichimura K (1999) Photochromic Polymers. In: Crano J, Guglielmetti R (eds) Organic photochromic and thermochromic compounds volume 2: physicochemical studies, biological applications, and thermochromism. Kluwer Academic/Plenum Publishers, New York, p 9

    Google Scholar 

  20. Delaire JA, Nakatani K (2000) Chem Rev 100:1817

    Article  CAS  Google Scholar 

  21. Ercole F, Davis TP, Evans RA (2010) Polym Chem 1:37

    Article  CAS  Google Scholar 

  22. Chen S, Hu J, Zhuo H, Yuen C, Chan L (2010) Polymer 51:240

    Article  CAS  Google Scholar 

  23. Ambrozic G, Mavri J, Zigon M (2002) Chem Phys 203:439

    CAS  Google Scholar 

  24. Wu J, Ge Q, Mather PT (2010) Macromolecules 43:7637

    Article  CAS  Google Scholar 

  25. Alves P, Coelho JFJ, Haack J, Rota A, Bruinink A, Gil MH (2009) Eur Polym J 45:1412

    Article  CAS  Google Scholar 

  26. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1711

    Article  Google Scholar 

  27. Chvedov D, Arnold A (2004) Ind Eng Chem Res 43:1451

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author gratefully acknowledges Dr. Mariana Cristea for her assistance with the DMA measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Oprea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oprea, S., Potolinca, V.O. Synthesis and characterization of photoactive polyurethane elastomers with 2,3-dihydroxypyridine in the main chain. J Mater Sci 47, 677–684 (2012). https://doi.org/10.1007/s10853-011-5838-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5838-4

Keywords

Navigation