Skip to main content
Log in

Preparation of sol–gel-based nanostructured hybrid coatings; part 1: morphological and mechanical studies

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Attempts have been made using sol–gel-based precursors to produce hybrid organic–inorganic clearcoats. To this end, a typical automotive acrylic/melamine clearcoat with tetramethyl ortosilicate (TEOS) and methacryoloxy propyltrimethoxysilane (MEMO) were used to obtain nanostructured silica clusters produced in situ embedded in the polymeric matrix. Microscopic techniques including scanning electron microscope (SEM), atomic force microscope (AFM), and transmission electron microscope (TEM) were utilized to investigate the morphology of coatings. The effect of each precursor on coating mechanical properties was also studied using dynamic mechanical thermal analysis (DMTA) as well as micro and nanoindentation techniques. It was found that using TEOS and MEMO (in non-hydrolyzed state), the mechanical properties of the resulting films were negatively influenced. The decreased hardness, lower T g and cross-linking density, and reduced elastic modulus were observed with non-hydrolyzed precursors. In addition, the phase separation of organic and inorganic domains occurred in the presence of pristine sol–gel precursors. However, using hydrolyzed precursors (HTEOS and HMEMO), the mechanical properties were notably improved. While HTEOS resulted in an increase in coating T g, and cross-linking density as well as improved elastic modulus and hardness, HMEMO caused an increase in coating hardness but lowered coating T g and cross-linking density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tahmassebi N, Moradian S, Ramezanzadeh B, Khosravi A, Behdad S (2010) Tribol Int 43:685

    Article  CAS  Google Scholar 

  2. Ramezanzadeh B, Moradian S, Khosravi A, Tahmassebi N (2011) J Coat Technol Res. doi:10.1007/s11998-010-9239-4

  3. Ramezanzadeh B, Mohseni M, Yari H, Sabbaghian S (2009) Prog Org Coat 66:149

    Article  CAS  Google Scholar 

  4. Ramezanzadeh B, Mohseni M, Yari H (2010) J Polym Environ. doi:10.1007/s10924-010-0201-4

  5. Yari H, Moradian S, Ramazanzade B, Kashani A, Tahmasebi N (2009) Polym Degrad Stab 94:1281

    Article  CAS  Google Scholar 

  6. Nichols ME, Gerlock JL, Smith CA, Darr CA (1999) Prog Org Coat 35:153

    Article  CAS  Google Scholar 

  7. Bertrand-Lambotte P, Loubet JL, Verpy C, Pavan S (2002) Thin Solid Films 420–421:281

    Article  Google Scholar 

  8. Hara Y, Mori T, Fujitani T (2000) Prog Org Coat 40:39

    Article  CAS  Google Scholar 

  9. Amerio E, Fabbri P, Malucelli G, Messori M, Sangermano M, Taurino R (2008) Prog Org Coat 62:129

    Article  CAS  Google Scholar 

  10. Jardret V, Ryntz R (2005) JCT Res 2(8):591

    Article  CAS  Google Scholar 

  11. Bauer DR (1982) J Appl Polym Sci 27:3651

    Article  CAS  Google Scholar 

  12. Bauer DR (1994) J Coat Technol 66(835):57

    CAS  Google Scholar 

  13. Allen NS, Edge M, Ortega A, Liauw CM, Stratton J, McIntyre RB (2002) Polym Degrad Stab 78(3):467

    Google Scholar 

  14. Shen X, Chena YC, Lin L, Lin CJ, Scantlebury D (2005) Electrochim Acta 50:5083

    Article  CAS  Google Scholar 

  15. Jalili MM, Moradian S, Dastmalchian H, Karbasi A (2007) Prog Org Coat 59:81

    Article  CAS  Google Scholar 

  16. Torró-Palau AM, Fernández-García JC, Orgilés-Barceló AC, Miguel Martín-Martínez J (2001) Int J Adhesion Adhesives 21(1):1

    Article  Google Scholar 

  17. Presting H, König U (2003) Mater Sci Eng C 23(6–8):737

    Article  Google Scholar 

  18. Hernandez-Padron G, Rojas F, Garcia-Garduno M, Canseco MA, Castano VM (2003) Mater Sci Eng A 355:338

    Article  Google Scholar 

  19. Hsu YG, Chang LF, Wang CP (2004) Mater Sci Eng A 367:205

    Article  Google Scholar 

  20. Castelvetro V, De Vita C (2004) Adv Colloid Interface Sci 108:167

    Article  Google Scholar 

  21. Messoria M, Tosellib M, Pilatia F, Fabbria E, Fabbria P, Busolia S, Pasqualia L, Nannarone S (2003) Polymer 44:4463

    Article  Google Scholar 

  22. Omrani A, Afsar S, Safarpour MA (2010) Mater Chem Phys 122:343

    Article  CAS  Google Scholar 

  23. Smith S, Mukundan P, Krishna Pillai P, Warrier KGK (2007) Mater Chem Phys 103:318

    Article  Google Scholar 

  24. Jana S, Lim MA, Baek IC, Kim CH, Seok SI (2008) Mater Chem Phys 112:1008

    Article  CAS  Google Scholar 

  25. Miao X, Ben-Nissan B (2000) J Mater Sci 35:497. doi:10.1023/A:1004740005893

    Article  CAS  Google Scholar 

  26. Ferchichi A, Calas-Etienne S, Smaïhi M, Prévot G, Solignac P, Etienne P (2009) J Mater Sci 44:2752. doi:10.1007/s10853-009-3359-1

    Article  CAS  Google Scholar 

  27. Zhu Y, Sun DX, Zheng H, Wei M, Zhang LM (2007) J Mater Sci 42:545. doi:10.1007/s10853-006-1066-8

    Article  CAS  Google Scholar 

  28. Ballarre J, Jimenez-Pique E, Anglada M, Pellice SA, Cavalieri AL (2009) Surf Coat Technol 203:3325

    Article  CAS  Google Scholar 

  29. Chou TP, Chandrasekaran C, Limmer SJ, Seraji S, Wu Y, Forbess MJ, Nguyen C, Cao GZ (2001) J Non Cryst Solids 290:153

    Google Scholar 

  30. Sanchez C, Soler-Illia GJDAA, Ribot F, Grosso D (2003) Comptes Rendus Chim 6(8–10):1131

    Article  CAS  Google Scholar 

  31. Sanchez C, In M (1990) J Non Cryst Solids 147–148:1

    Google Scholar 

  32. Schmidt H, Wolter H (1990) J Non Cryst Solids 121:428

    Article  CAS  Google Scholar 

  33. Portier J, Choy JH, Subramanian MA (2001) Int J Inorg Mater 3:581

    Article  CAS  Google Scholar 

  34. Mackenzie JD (1995) Hybrid organic-inorganic composites. ACS Symposium Series 585, Washington, p. 227, Chapter 17

  35. Chen JI, Chareonsak R, Puengpipat V (1999) J Appl Polym Sci 74:1341

    Article  CAS  Google Scholar 

  36. Zhang Y, Wang MQ (2000) J Non Cryst Solids 271:88

    Article  CAS  Google Scholar 

  37. Chan CM, Cao GZ, Fong H, Sarikaya M (2000) J Mater Res 15(1):148

    Article  CAS  Google Scholar 

  38. Jang J, Bae J, Kang D (2001) J Appl Polym Sci 82:2310

    Article  CAS  Google Scholar 

  39. Alvarado-Rivera J, Muñoz-Saldaña J, Castro-Beltrán A, Quintero-Armenta JM, Almaral-Sánchez JL, Ramírez-Bon R (2007) Phys Stat Sol 4(11):4254

    Article  CAS  Google Scholar 

  40. Farhadyar N, Rahimi A, Langroudi AE (2005) Iran Polym J 14(2):155

    CAS  Google Scholar 

  41. Bauer F, Sauerland V, Glasel HJ, Ernst H, Findeisen M, Hartmann E, Langguth H, Marquardt B, Mehnert R (2002) Macromol Mater Eng 287(8):546

    Article  CAS  Google Scholar 

  42. Lu SR, Zhang HL, Zhao CX, Wang XY (2005) J Mater Sci 40:1079. doi:10.1007/s10853-005-6920-6

    Article  CAS  Google Scholar 

  43. Hsiang HI, Chang YL, Chen CY, Yen FS (2011) Appl Surf Sci 257:3451

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohseni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramezanzadeh, B., Mohseni, M. & Karbasi, A. Preparation of sol–gel-based nanostructured hybrid coatings; part 1: morphological and mechanical studies. J Mater Sci 47, 440–454 (2012). https://doi.org/10.1007/s10853-011-5819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5819-7

Keywords

Navigation