Advertisement

Journal of Materials Science

, Volume 47, Issue 1, pp 341–349 | Cite as

Preparation of porous spherical ZrO2–SiO2 composite particles using templating and its solid acidity by H2SO4 treatment

  • Shuhei Uchiyama
  • Toshihiro Isobe
  • Sachiko Matsushita
  • Kiyotaka Nakajima
  • Michikazu Hara
  • Akira Nakajima
Article

Abstract

Porous ZrO2–SiO2 composite sphere particles were prepared by impregnating precursor solutions into organic monolith particles, with subsequent calcination in air. The porous spheres possessed uniformly sized pores of around 10 nm. Addition of SiO2–ZrO2 decreased the ZrO2 crystallinity and increased the specific surface area. The acid amount on the surface of the composite spheres was increased by treatment with H2SO4. The acid strength and its amount, including the Lewis/Brønsted acid ratio, depended on the SiO2/ZrO2 ratio and the H2SO4 concentration. The powder treated under an optimum condition exhibited higher solid acidity than the reference solid acid catalyst. The prepared porous SO4 2−/ZrO2–SiO2 spheres showed higher saccharization activity than the reference solid acid catalyst did.

Keywords

Composite Particle Large Specific Surface Area Acid Amount Porous Sphere 20Si Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to staff of the Center of Advanced Materials Analysis at Tokyo Institute of Technology for SEM observations.

Supplementary material

10853_2011_5803_MOESM1_ESM.doc (338 kb)
Supplementary material 1 (DOC 338 kb)

References

  1. 1.
    Deshpande AS, Niederberger M (2007) Micropor Mesopor Mater 101:413CrossRefGoogle Scholar
  2. 2.
    Naydenov V, Tosheva L, Sterte J (2003) Micropor Mesopor Mater 66:321CrossRefGoogle Scholar
  3. 3.
    Valde′s-Solı′s T, Fuertes AB (2006) Mater Res Bull 41:2187CrossRefGoogle Scholar
  4. 4.
    Schuth F (2001) Chem Mater 13:3184CrossRefGoogle Scholar
  5. 5.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743CrossRefGoogle Scholar
  6. 6.
    Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) J Am Chem Soc 122:10712CrossRefGoogle Scholar
  7. 7.
    Zhu K, Yue B, Zhou W, He H (2003) Chem Commun 98Google Scholar
  8. 8.
    Yao BD, Zhang LD (1999) J Mater Sci 34:5983. doi: 10.1023/A:1004780728297 CrossRefGoogle Scholar
  9. 9.
    Orlov A, Zhai QZ, Klinowski J (2006) J Mater Sci 41:2187. doi: 10.1007/s10853-006-7184-5 CrossRefGoogle Scholar
  10. 10.
    Ma TY, Zhang XJ, Yuan ZY (2009) J Mater Sci 44:6775. doi: 10.1007/s10853-009-3576-7 CrossRefGoogle Scholar
  11. 11.
    Ecormier MA, Wilson K, Lee AF (2003) J Catal 215:57CrossRefGoogle Scholar
  12. 12.
    Arata K, Hino M (1990) Mater Chem Phys 26:213CrossRefGoogle Scholar
  13. 13.
    Arata K (1996) Appl Catal A 146:3CrossRefGoogle Scholar
  14. 14.
    Song X, Sayari A (1996) Catal Rev 38:329CrossRefGoogle Scholar
  15. 15.
    Xia Q-H, Hidajat H, Kawi S (2002) J Catal 205:318CrossRefGoogle Scholar
  16. 16.
    Yadav GD, Nair JJ (1999) Micropor Mesopor Mater 33:1CrossRefGoogle Scholar
  17. 17.
    McIntosh DJ, Kydd RA (2000) Micropor Mesopor Mater 37:281CrossRefGoogle Scholar
  18. 18.
    Armendariz H, Coq B, Tichit D, Dutartre R, Figueras F (1998) J Catal 173:345CrossRefGoogle Scholar
  19. 19.
    Parvulescu V, Coman S, Grange P, Parvulescu VI (1999) Appl Catal A Gen 176:27CrossRefGoogle Scholar
  20. 20.
    Hino M, Arata K (1980) J Chem Soc Chem Commun 851–852Google Scholar
  21. 21.
    Hino M, Arata K (1979) J Am Chem Soc 101:6439CrossRefGoogle Scholar
  22. 22.
    Wang Y, Ma JH, Liang D, Zhou MM, Li FX, Li RF (2009) J Mater Sci 44:6736. doi: 10.1007/s10853-009-3603-8 CrossRefGoogle Scholar
  23. 23.
    Yang X, Jentoft FC, Jentoft RE, Girgsdies G, Ressler T (2002) Catal Lett 81:25CrossRefGoogle Scholar
  24. 24.
    Ecormier MA, Lee AF, Wilson K (2005) Micropor Mesopor Mater 80:301CrossRefGoogle Scholar
  25. 25.
    Sohn JR, Jang HJ (1991) J Mol Catal A 64:349CrossRefGoogle Scholar
  26. 26.
    Miller JB, Ko EI (1996) Chem Eng J 64:273Google Scholar
  27. 27.
    Navio JA, Colon G, Macias M, Campelo JM, Romero AA, Marinas JM (1996) J Catal 161:605CrossRefGoogle Scholar
  28. 28.
    Lopez T, Navarrete J, Gomez R, Novaro O, Figueras F, Armendariz H (1995) Appl Catal A 125:217CrossRefGoogle Scholar
  29. 29.
    Rosenberg DJ, Coloma F, Anderson JA (2002) J Catal 210:218CrossRefGoogle Scholar
  30. 30.
    Rosenberg DJ, Bachiller-Baeza B, Dines TJ, Anderson JA (2003) J Phys Chem B 107:6526CrossRefGoogle Scholar
  31. 31.
    Das SK, Bhunia MK, Sinha AK, Bhaumik A (2009) J Phys Chem C 113:8918CrossRefGoogle Scholar
  32. 32.
    Shchukin DG, Caruso RA (2004) Chem Mater 16:2287CrossRefGoogle Scholar
  33. 33.
    Du K-F, Yang D, Sun Y (2009) Ind Eng Chem Res 48:755CrossRefGoogle Scholar
  34. 34.
    Smatt J-H, Schuwer N, Jarn M, Lindner W, Linden M (2008) Micropor Mesopor Mater 112:308CrossRefGoogle Scholar
  35. 35.
    Shimura N, Ogawa M (2007) J Mater Sci 42:5299. doi: 10.1007/s10853-007-1771-y CrossRefGoogle Scholar
  36. 36.
    Soriente A, Arienzo R, Rosa MD, Spinella A, Scettri A, Palombi L (1999) Green Chem 1:157CrossRefGoogle Scholar
  37. 37.
    Dhakshinamoorthy A, Pitchumani K (2008) Tetrahedron Lett 49:1818CrossRefGoogle Scholar
  38. 38.
    Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M (2008) J Am Chem Soc 130:12787CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Pan L, Gao C, Wang Y, Zhao Y (2010) J Sol–Gel Sci Technol 56:27CrossRefGoogle Scholar
  40. 40.
    Pouilleau J, Devilliers D, Groult H, Marcus P (1997) J Mater Sci 32:5645. doi: 10.1023/A:1018645112465 CrossRefGoogle Scholar
  41. 41.
    Stoch J, Lercher J, Ceckiewicz S (1992) Zeolite 12:81CrossRefGoogle Scholar
  42. 42.
    Zhu X, Meng Z (1994) J Appl Phys 75:3756CrossRefGoogle Scholar
  43. 43.
    Zhang G, Sun S, Yang D, Dodelet J-P, Sacher E (2008) Carbon 46:196CrossRefGoogle Scholar
  44. 44.
    Zhuang Q, Miller JM (2001) Appl Catal A 209:L1CrossRefGoogle Scholar
  45. 45.
    Gomez R, Lopez T, Tzompantzi F, Garciafigueroa E, Acosta DW, Novaro O (1997) Langmuir 13:970CrossRefGoogle Scholar
  46. 46.
    Reddy BM, Khan A (2005) Catal Rev 47:257CrossRefGoogle Scholar
  47. 47.
    Tarafdar A, Panda AB, Pramanik P (2005) Microporous Mesoporous Mater 84:223CrossRefGoogle Scholar
  48. 48.
    Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) Science 311:484CrossRefGoogle Scholar
  49. 49.
    Fukuoka A, Dhepe PL (2006) Angew Chem Int Ed 45:5161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shuhei Uchiyama
    • 1
  • Toshihiro Isobe
    • 1
  • Sachiko Matsushita
    • 1
  • Kiyotaka Nakajima
    • 2
  • Michikazu Hara
    • 2
  • Akira Nakajima
    • 1
  1. 1.Department of Metallurgy and Ceramic ScienceGraduate School of Science and Engineering, Tokyo Institute of TechnologyTokyoJapan
  2. 2.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations