Advertisement

Journal of Materials Science

, Volume 47, Issue 1, pp 332–340 | Cite as

Click synthesis of the thermo- and pH-sensitive hydrogels containing β-cyclodextrins

  • Hong-Liang Wei
  • Kai Yao
  • Hui-Juan Chu
  • Zhi-Cheng Li
  • Jing Zhu
  • Yan-Min Shen
  • Zi-Xuan Zhao
  • Ya-Li Feng
Article

Abstract

Novel intelligent hydrogels containing β-cyclodextrins were prepared by tandem physical and chemical crosslinking method based on Diels–Alder reaction. First, dienophile-functionalized cyclodextrins (HCD–AMI) were synthesized by the coupling reaction of hydroxyethyl-β-cyclodextrins and N-maleoyl alanine (AMI); diene-functionalized polymers (PFMIPA) were synthesized by free radical copolymerization of N-isopropylacrylamide and furfuryl amine maleic acid monoamide, a novel monomer synthesized in our lab. Then, the LCSTs of the PFMIPA were estimated by transmittance measurements of copolymer solutions. After the as-synthesized PFMIPA and HCD–AMI were dissolved separately in water and mixed, the hydrogels with physical crosslinks formed quickly within 10 s at 37 °C. Subsequently, chemical crosslinks came into being gradually due to Diels–Alder reaction. Therefore, there are both physical crosslinks and chemical crosslinks in as-prepared hydrogels, resulting in the improvement of the mechanical strength of the hydrogels. And the in vitro degradation behaviors of the resultant hydrogels were given a pilot study. A general gravimetric method was used to study the swelling behavior of the hydrogels. It was found that the hydrogels showed good pH/temperature-sensitivity. The strategy described here has several advantages for preparing intelligent hydrogels including tunable gelation rate, mild reaction conditions, no initiator or catalyzer, and no organic solvent. We believe that this novel, potentially biocompatible hydrogels could have biomedical applications, especially in the area of tissue engineering and drug-controlled release carriers.

Keywords

Cyclodextrin Lower Critical Solution Temperature Maleic Anhydride PNIPA Furan Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (50773018), the Science and Technology Department of Henan Province (102300410119), the Education Department of Henan Province (2008A430003) and Henan University of Technology (2006BS043) for financial support. The authors also gratefully acknowledge a grant from Zhengzhou Science and Technology Bureau.

References

  1. 1.
    Craig DQM, Cook GD, Parr GD (1992) J Mater Sci 27:3325. doi: 10.1007/BF01116032 CrossRefGoogle Scholar
  2. 2.
    Hu J, Tao Z, Li SJ, Liu BL (2005) J Mater Sci 40:6057. doi: 10.1007/s10853-005-3799-1 CrossRefGoogle Scholar
  3. 3.
    Wang Y, Xiong H, Gao Y, Li H (2008) J Mater Sci 43:5609. doi: 10.1007/s10853-008-2804-x CrossRefGoogle Scholar
  4. 4.
    van de Manakker F, van der Pot M, Vermonden T, van Nostrum CF, Hennink WE (2008) Macromolecules 41:1766CrossRefGoogle Scholar
  5. 5.
    Guo M, Jiang M, Pispas S, Yu W, Zhou C (2008) Macromolecules 41:9744CrossRefGoogle Scholar
  6. 6.
    Yu H, Feng Z, Zhang A, Hou D, Sun L (2006) Polymer 47:6066CrossRefGoogle Scholar
  7. 7.
    Liu ZT, Shen LH, Liu ZW, Lu J (2009) J Mater Sci 44:1813. doi: 10.1007/s10853-008-3238-1 CrossRefGoogle Scholar
  8. 8.
    Zhang JT, Xue YN, Gao FZ, Huang SW, Zhuo RX (2008) J Appl Polym Sci 108:3031CrossRefGoogle Scholar
  9. 9.
    Li J, Ni X, Leong KW (2003) J Biomed Mater Res 65A:196CrossRefGoogle Scholar
  10. 10.
    Liu JH, Chiu YH, Chiu TH (2009) Macromolecules 42:3715CrossRefGoogle Scholar
  11. 11.
    Ni X, Cheng A, Li J (2009) J Biomed Mater Res 88A:1031CrossRefGoogle Scholar
  12. 12.
    Wang ZM, Chen YM (2007) Macromolecules 40:3402CrossRefGoogle Scholar
  13. 13.
    Han J, Wang K, Yang D, Nie J (2009) Int J Biol Macromol 44:229CrossRefGoogle Scholar
  14. 14.
    Paulino AT, Guilherme MR, Mattoso LHC, Tambourgi EB (2010) Macromol Chem Phys 211:1196Google Scholar
  15. 15.
    Sahiner N, Singh M (2007) Polymer 48:2827CrossRefGoogle Scholar
  16. 16.
    Zhang X, Wu D, Chu CC (2004) Biomaterials 25:4719CrossRefGoogle Scholar
  17. 17.
    Ekici S (2011) J Mater Sci 46:2843. doi: 10.1007/s10853-010-5158-0 CrossRefGoogle Scholar
  18. 18.
    Chen JP, Cheng TH (2009) Polymer 50:107CrossRefGoogle Scholar
  19. 19.
    Tan H, Constance RC, Karin AP, Kacey GM (2009) Biomaterials 30:2499CrossRefGoogle Scholar
  20. 20.
    King VR, Alovskaya A, Wei DYT, Brown RA, Priestley JV (2010) Biomaterials 31:4447CrossRefGoogle Scholar
  21. 21.
    Geever LM, Higginbotham CL (2011) J Mater Sci 46:3233. doi: 10.1007/s10853-010-5209-6 CrossRefGoogle Scholar
  22. 22.
    Bi L, Cheng W, Fan H, Pei G (2010) Biomaterials 31:3201CrossRefGoogle Scholar
  23. 23.
    Lee F, Chung JE, Kurisawa M (2009) J Control Release 134:186CrossRefGoogle Scholar
  24. 24.
    Jin R, Moreira Teixeira LS, Dijkstra PJ, Blitterswijk CAv, Karperien M, Feijen J (2010) Biomaterials 31:3103CrossRefGoogle Scholar
  25. 25.
    Fundueanu G, Constantin M, Ascenzi P (2009) Acta Biomater 5:363CrossRefGoogle Scholar
  26. 26.
    Wang ZC, Xu XD, Chen CS, Wang GR, Cheng SX, Zhang XZ, Zhuo RX (2009) React Funct Polym 69:14CrossRefGoogle Scholar
  27. 27.
    Zhang H, Zhong H, Zhang L, Chen S, Zhao Y, Zhu Y, Wang J (2010) Carbohydr Polym 79:131CrossRefGoogle Scholar
  28. 28.
    Mujumdar SK, Siegel RA (2008) J Polym Sci Pol Chem 46:6630CrossRefGoogle Scholar
  29. 29.
    Zhang J, Chu LY, Cheng CJ, Mi DF, Zhou MY, Ju XJ (2008) Polymer 49:2595CrossRefGoogle Scholar
  30. 30.
    Pollock JF, Healy KE (2010) Acta Biomater 6:1307CrossRefGoogle Scholar
  31. 31.
    He C, Kim SW, Lee DS (2008) J Control Release 127:189CrossRefGoogle Scholar
  32. 32.
    Wei HL, Yang Z, Zheng LM, Shen YM (2009) Polymer 50:2836CrossRefGoogle Scholar
  33. 33.
    Wei HL, Yang Z, Chu HJ, Zhu J, Li ZC, Cui JS (2010) Polymer 51:1694CrossRefGoogle Scholar
  34. 34.
    Wei HL, Yao K, Yang Z, Chu HJ, Zhu J, Ma CC, Zhao ZX (2011) Macromol Res 19(3):294CrossRefGoogle Scholar
  35. 35.
    Wei HL, Yang J, Chu HJ, Yang Z, Ma CC, Yao K (2011) J Appl Polym Sci 120:974CrossRefGoogle Scholar
  36. 36.
    Zhang LF, Yang DJ, Chen HC, Sun R, Xu L, Xiong ZC, Govender T, Xiong CD (2008) Int J Pharm 353:74CrossRefGoogle Scholar
  37. 37.
    Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Carbohyd Polym 74:215CrossRefGoogle Scholar
  38. 38.
    Milašinović N, Krušić MK, Knežević-Jugović Z, Filipović J (2010) Int J Pharm 383:53CrossRefGoogle Scholar
  39. 39.
    Krušić MK, Filipović J (2006) Polymer 47:148CrossRefGoogle Scholar
  40. 40.
    Zhang N, Liu M, Shen Y, Chen J, Dai L, Gao C (2011) J Mater Sci 46:1523. doi: 10.1007/s10853-010-4957-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hong-Liang Wei
    • 1
  • Kai Yao
    • 1
  • Hui-Juan Chu
    • 1
  • Zhi-Cheng Li
    • 1
  • Jing Zhu
    • 1
  • Yan-Min Shen
    • 1
  • Zi-Xuan Zhao
    • 1
  • Ya-Li Feng
    • 1
  1. 1.School of Chemistry and Chemical EngineeringHenan University of TechnologyZhengzhouPeople’s Republic of China

Personalised recommendations