Journal of Materials Science

, Volume 47, Issue 1, pp 169–175 | Cite as

Spark plasma sintering synthesis and mechanical spectroscopy of the ω-Al0.7Cu0.2Fe0.1 phase

  • G. Laplanche
  • P. Gadaud
  • J. Bonneville
  • A. Joulain
  • V. Gauthier-Brunet
  • S. Dubois
  • F. Jay


Starting from a mixture of Al–Cu–Fe quasicrystalline (QC) particles and Al powder, a fully dense and almost Al–Cu–Fe ω single-phase alloy was produced by spark plasma sintering. This technique allows synthesising large samples with sizes suitable for mechanical spectroscopy experiments. Mechanical spectroscopy was selected because it is a relevant tool for detecting the presence of structural defects at both nano and microscopic scales. Young’s moduli were measured in the 15 kHz range as a function of temperature by the resonant frequency method. Young’s moduli behave similarly for typical metals and exhibit values that are comparable to those of the Al–Cu–Fe QC phase. The damping coefficient Q −1 was determined at various temperatures between room temperature and 840 K over a large frequency range, i.e. between 10−3 and 10 Hz. The results suggest that solid friction effects do occur. In addition, a relaxation peak is observed in the intermediate temperature range.


Spark Plasma Sinter Reinforcement Particle Relaxation Peak Spark Plasma Sinter Process Mechanical Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Laplanche G, Joulain A, Bonneville J, Gauthier-Brunet V, Dubois S, El Kabir T (2010) J Mat Res 25:957CrossRefGoogle Scholar
  2. 2.
    Bonneville J, Laplanche G, Joulain A, Gauthier-Brunet V, Dubois S (2010) J Phys 240:012013CrossRefGoogle Scholar
  3. 3.
    Tsaï AP, Aoki K, Akihisa I, Masumoto T (1993) J Mater Res 8:5CrossRefGoogle Scholar
  4. 4.
    Taupin V, Berbenni S, Fressengeas C, Bouaziz O (2010) Acta Mat 58:5232CrossRefGoogle Scholar
  5. 5.
    Bonneville J, Caillard D, Guyot P (2008). In: Hirth JP (ed) Dislocations in Solids, vol 14. Elsevier, North-Holland, pp 251–332Google Scholar
  6. 6.
    Bresson L, Gratias D (1993) J Non-Cryst Solids 153–154:468CrossRefGoogle Scholar
  7. 7.
    Huttunen-Saarivirta E (2004) J Alloys Comp 363:154CrossRefGoogle Scholar
  8. 8.
    Giacometti E, Baluc N, Bonneville J (1999) Phil Mag Lett 79:1CrossRefGoogle Scholar
  9. 9.
    Laplanche G, Joulain A, Bonneville J, Gauthier-Brunet V, Dubois S to be publishedGoogle Scholar
  10. 10.
    Giacometti E, Fikar J, Baluc N, Bonneville J (2002) Phil Mag Lett 82:183CrossRefGoogle Scholar
  11. 11.
    Mazot P, de Fouquet J, Woirgard J, Pautrot JP (1992) J Phys III:751Google Scholar
  12. 12.
    Spinner S, Reichard TW, Tefft WE (1960) J Res ASTM 64A:147Google Scholar
  13. 13.
    Spinner S, Tefft WE (1961) J Res ASTM 65A:167Google Scholar
  14. 14.
    Nowick AS, Berry BS (1972) Anelastic relaxation in solids. Academic Press, New YorkGoogle Scholar
  15. 15.
    Woirgard J, Mazot P, Rivière A (1981) J Phys 10:1135Google Scholar
  16. 16.
    Bown MG, Brown PJ (1956) Acta Crystallogr A 9:911CrossRefGoogle Scholar
  17. 17.
    Laplanche G, Joulain A, Bonneville J, Gauthier-Brunet V, Dubois S (2010) Mat Sci Eng A 527:4515CrossRefGoogle Scholar
  18. 18.
    Comte C, von Stebut J (2002) Surf Coat Technol 154:42CrossRefGoogle Scholar
  19. 19.
    Tang F, Gnäupel-Herold T, Prask H, Anderson IE (2005) Mat Sci Eng A 399:99CrossRefGoogle Scholar
  20. 20.
    Tang F, Meeks H, Spowart JE, Gnaeupel-Herold T, Prask H, Anderson IE (2004) Mat Sci Eng A 386:194Google Scholar
  21. 21.
    Molénat G, Durand L, Galy J, Couret A (2010) J Metall 2010:1CrossRefGoogle Scholar
  22. 22.
    Yang C, Jin SZ, Liang BY, Jia SS (2009) J Eur Ceram Soc 29:181CrossRefGoogle Scholar
  23. 23.
    Laplanche G, Joulain A, Bonneville J, Schaller R, El Kabir T (2010) J Alloys Comp 493:453CrossRefGoogle Scholar
  24. 24.
    Gadaud P (2006) Int J Mater Prod Technol 26:326Google Scholar
  25. 25.
    Gadaud P, Pautrot S (2011) In: The 16th international conference on internal friction and mechanical spectroscopy (ICIFMS 16) held in Lausanne on July 3–8, 2011Google Scholar
  26. 26.
    Gadaud P, Pautrot S (2004) Mat Sci Eng A 370:422CrossRefGoogle Scholar
  27. 27.
    Tang F, Anderson IE, Gnaupel-Herold T, Prask H (2004) Mat Sci Eng A 383:362CrossRefGoogle Scholar
  28. 28.
    Tanaka K, Mitarai Y, Koiwa M (1996) Phil Mag A 73:1715CrossRefGoogle Scholar
  29. 29.
    Vanderwal JJ, Zhao P, Walton D (1992) Phys Rev B 46:501CrossRefGoogle Scholar
  30. 30.
    Köster U, Liu W, Liebertz H, Michel M (1993) J Non-Cryst Solids 153–154:446CrossRefGoogle Scholar
  31. 31.
    Schoeck G, Bisogni E, Shyne J (1964) Acta Metall 12:1466CrossRefGoogle Scholar
  32. 32.
    Rivière A, Gadaud P, Woirgard J (1993) In: Bhagat RB (ed) Damping of multiphase inorganic materials. ASM International, Materials ParkGoogle Scholar
  33. 33.
    Pautrot S, Mazot P (1993) Revue de Métall 90:1665Google Scholar
  34. 34.
    Numakura H, Kurita N, Koiwa M, Gadaud P (1999) Phil Mag 79:943CrossRefGoogle Scholar
  35. 35.
    Phragmen G (1950) J Inst Met 77:489Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Laplanche
    • 1
  • P. Gadaud
    • 2
  • J. Bonneville
    • 1
  • A. Joulain
    • 1
  • V. Gauthier-Brunet
    • 1
  • S. Dubois
    • 1
  • F. Jay
    • 1
  1. 1.Département de Physique et Mécanique des MatériauxInstitut P’ - Université de Poitiers - CNRS UPR 3346 - ENSMAFuturoscope Chasseneuil CedexFrance
  2. 2.Département de Physique et Mécanique des MatériauxInstitut P’ - Université de Poitiers - CNRS UPR 3346 - ENSMAFuturoscope Chasseneuil CedexFrance

Personalised recommendations