Journal of Materials Science

, Volume 47, Issue 1, pp 138–144 | Cite as

Fabrication of SiC particles-reinforced magnesium matrix composite by ultrasonic vibration

  • K. B. Nie
  • X. J. Wang
  • K. Wu
  • L. Xu
  • M. Y. Zheng
  • X. S. Hu


Magnesium matrix composites reinforced with two volume fractions (1 and 3%) of SiC particles (1 μm) were successfully fabricated by ultrasonic vibration. Compared with as-cast AZ91 alloy, with the addition of the SiC particles grain size of matrix decreased, while most of the phase Mg17Al12 varied from coarse plates to lamellar precipitates in the SiCp/AZ91 composites. With increasing volume fraction of the SiC particles, grains of matrix in the SiCp/AZ91 composites were gradually refined. The SiC particles were located mainly at grain boundaries in both 1 vol% SiCp/AZ91 composite and 3 vol% SiCp/AZ91 composite. SiC particles inside the particle clusters may be still separated by magnesium. The study of the interface between the SiC particle and the alloy matrix suggested that SiC particles bonded well with the alloy matrix without interfacial reaction. The ultimate tensile strength, yield strength, and elongation to fracture of the SiCp/AZ91 composites were simultaneously improved compared with that of the as-cast AZ91 alloy.


Ultimate Tensile Strength Ultrasonic Vibration AZ91 Alloy Ultrasonic Cavitation Phase Mg17Al12 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by "the Fundamental Research Funds for the Central Universities" (Grant No. HIT.NSRIF.201130).


  1. 1.
    Wang XJ, Wu K, Huang WX, Zhang HF, Zheng MY, Peng DL (2007) Compos Sci Technol 67:2253CrossRefGoogle Scholar
  2. 2.
    Ye HZ, Liu XY (2005) J Alloys Compd 402:162CrossRefGoogle Scholar
  3. 3.
    Jiang QC, Li XL, Wang HY (2003) Scr Mater 48:713CrossRefGoogle Scholar
  4. 4.
    Bochenek A, Braszczynska KN (2000) Mater Sci Eng A 290:122CrossRefGoogle Scholar
  5. 5.
    Cai Y, Tan MJ, Shen GJ, Su HQ (2000) Mater Sci Eng A 282:232CrossRefGoogle Scholar
  6. 6.
    Chen TJ, Ma Y, Lv WB, Li YD, Hao Y (2010) J Mater Sci 45:6732. doi: 10.1007/s10853-010-4767-y CrossRefGoogle Scholar
  7. 7.
    Saravanan RA, Surappa MK (2000) Mater Sci Eng A 276:108CrossRefGoogle Scholar
  8. 8.
    Wang XJ, Hu XS, Wu K, Zheng MY, Zheng L, Zhai QJ (2009) J Mater Sci 44:2759. doi: 10.1007/s10853-009-3360-8 CrossRefGoogle Scholar
  9. 9.
    Luo A (1995) Mater Trans A 26:2445CrossRefGoogle Scholar
  10. 10.
    Ferkel H, Mordike BL (2001) Mater Sci Eng A 298:193CrossRefGoogle Scholar
  11. 11.
    Zheng MY, Wu K, Yao CK (2001) Mater Sci Eng A 318:50CrossRefGoogle Scholar
  12. 12.
    Lan J, Yang Y, Li X (2004) Mater Sci Eng A 386:284Google Scholar
  13. 13.
    Li X, Yang Y, Cheng XD (2004) J Mater Sci 39:3211. doi: 10.1023/B:JMSC.0000025862.23609.6f CrossRefGoogle Scholar
  14. 14.
    Cao G, Konishi H, Li X (2008) Mater Sci Eng A 486:357CrossRefGoogle Scholar
  15. 15.
    Choi H, Alba-Baena N, Nimityongskul S, Jones M, Wood T, Sahoo M, Lakes R, Kou S, Li X (2011) J Mater Sci 46:2991. doi: 10.1007/s10853-010-5176-y CrossRefGoogle Scholar
  16. 16.
    Suslick KS (1999) Annu Rev Mater Sci 29:295CrossRefGoogle Scholar
  17. 17.
    Liu X, Osawa Y, Takamori S, Mukai T (2008) Mater Lett 62:2872CrossRefGoogle Scholar
  18. 18.
    Liu X, Osawa Y, Takamori S, Mukai T (2008) Mater Sci Eng A 487:120CrossRefGoogle Scholar
  19. 19.
    Khosro Aghayani M, Niroumand B (2011) J Alloys Compd 509:114CrossRefGoogle Scholar
  20. 20.
    Ye HZ, Liu XY (2004) J Mater Sci 39:6153. doi: 10.1023/B:JMSC.0000043583.47148.31 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. B. Nie
    • 1
  • X. J. Wang
    • 1
  • K. Wu
    • 1
  • L. Xu
    • 1
  • M. Y. Zheng
    • 1
  • X. S. Hu
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations