Advertisement

Journal of Materials Science

, 46:7850 | Cite as

Compressive mechanical properties and deformation behavior of porous polymer blends of poly(ε-caprolactone) and poly(l-lactic acid)

  • Joo-Eon Park
  • Mitsugu Todo
Article

Abstract

Porous biodegradable polymeric scaffolds are developed by physically blending two different kinds of biodegradable polymers, PCL, and PLLA, for application in tissue engineering. The main objective of the development of this material is to control the mechanical properties, such as, elastic modulus and strength. The results from mechanical testing showed that the compressive mechanical properties of PCL/PLLA scaffold can be varied by changing the blend ratio. It also showed that these properties can be well predicted by the rule of mixture. The primary deformation mechanism of the scaffolds was found to be localized buckling of struts surrounding the pores. Localized ductile failure caused by PCL phase tends to be suppressed with increasing PLLA content. The immiscibility of PCL and PLLA caused the phase-separation morphology that strongly affected the macroscopic mechanical properties and the microscopic deformation behavior.

Keywords

Compressive Strength PLLA Differential Scanning Calorimeter Analysis Pure PLLA Initial Elastic Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Roosa SMM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ (2009) J Biomed Mater Res 92A:359CrossRefGoogle Scholar
  2. 2.
    Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) J Mater Sci Mater Med 19:2535CrossRefGoogle Scholar
  3. 3.
    Shimko DA, Shimko VF, Sander EA, Dickson KF, Nauman EA (2005) J Biomed Mater Res 73B:315CrossRefGoogle Scholar
  4. 4.
    Wu L, Ding J (2005) J Biomed Mater Res 75A:767CrossRefGoogle Scholar
  5. 5.
    Hou Q, Grijpma DW, Feijen J (2003) Biomaterials 24:1937CrossRefGoogle Scholar
  6. 6.
    Li X, Feng Q, Cui F (2006) Mater Sci Eng 26C:716Google Scholar
  7. 7.
    Georgiou G, Mathieu L, Pioletti DP, Bourban PE, Manson JAE, Knowles JC, Nazhat SN (2007) J Biomed Mater Res 80B:322CrossRefGoogle Scholar
  8. 8.
    Barry RA III, Shepherd RF, Hanson JN, Nuzzo RG, Wiltzius P, Lewis JA (2009) Advan Mater 21:2407CrossRefGoogle Scholar
  9. 9.
    Kang HW, Rhie JW, Cho DW (2009) Microelec Eng 86:941CrossRefGoogle Scholar
  10. 10.
    Michna S, Wu W, Lewis JA (2005) Biomaterials 26:5632CrossRefGoogle Scholar
  11. 11.
    Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) J Mater Sci Mater Med 16:1121CrossRefGoogle Scholar
  12. 12.
    Dellinger JG, Eurell JAC, Jamison RD (2005) J Biomed Mater Res 76A:366CrossRefGoogle Scholar
  13. 13.
    Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R (1994) Polymer 35:1068CrossRefGoogle Scholar
  14. 14.
    Zhang R, Ma PX (1999) J Biomed Mater Res 45:285CrossRefGoogle Scholar
  15. 15.
    Zhang R, Ma PX (1999) J Biomed Mater Res 44:446CrossRefGoogle Scholar
  16. 16.
    Oh SH, Park IK, Kim JM, Lee JH (2007) Biomaterials 28:1664CrossRefGoogle Scholar
  17. 17.
    Li WJ, Danielson KG, Alexander PG, Tuan RS (2003) J Biomed Mater Res 67A:1105CrossRefGoogle Scholar
  18. 18.
    Kim SS, Park MS, Jeon OJ, Choi CY, Kim BS (2006) Biomaterials 27:1399CrossRefGoogle Scholar
  19. 19.
    Wei G, Ma PX (2004) Biomaterials 25:4749CrossRefGoogle Scholar
  20. 20.
    Zhang P, Hong Z, Yu T, Chen X, Jing X (2009) Biomaterials 30:58CrossRefGoogle Scholar
  21. 21.
    Kang Y, Yin G, Yuan Q, Yao Y, Huang Z, Liao X, Yang B, Liao L, Wang H (2008) Mater Lett 62:12Google Scholar
  22. 22.
    Todo M, Park SD, Takayama T, Arakawa K (2007) Eng Fract Mech 74:1872CrossRefGoogle Scholar
  23. 23.
    Todo M, Park JE, Kuraoka H, Kim JW, Taki K, Ohshima M (2009) J Mater Sci 44:4191. doi: 10.1007/s10853-009-3546-0 CrossRefGoogle Scholar
  24. 24.
    Den Dunnen WFA, Schakenraad JM, Zondervan GJ, Pennings AJ, Van Der Lei B, Robinson PH (1993) J Mater Sci Mater Med 4:521CrossRefGoogle Scholar
  25. 25.
    Todo M, Kuraoka H, Kim JW, Taki K, Ohshima M (2008) J Mater Sci 43:5644. doi: 10.1007/s10853-008-2881-x CrossRefGoogle Scholar
  26. 26.
    Tu C, Cai Q, Yang J, Wan Y, Bei J, Wang S (2003) Polym Advan Tech 14:565CrossRefGoogle Scholar
  27. 27.
    Tsuji H, Yamada T, Suzuki M, Itsuno S (2003) Polym Int 52:269CrossRefGoogle Scholar
  28. 28.
    Nielsen LE (1975) Marcel Dekker, Inc., New YorkGoogle Scholar
  29. 29.
    Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY (2003) Biomaterial 24:1167CrossRefGoogle Scholar
  30. 30.
    Takayama T, Todo M (2006) J Mater Sci 41:4989. doi: 10.1007/s10853-006-0137-1 CrossRefGoogle Scholar
  31. 31.
    Na YH, He Y, Shuai X, Kikkawa Y, Doi Y, Inoue Y (2002) Biomacromolecules 3:1179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Interdisciplinary Graduate School of Engineering SciencesKyushu UniversityKasugaJapan
  2. 2.Research Institute for Applied MechanicsKyushu UniversityKasugaJapan

Personalised recommendations