Advertisement

Journal of Materials Science

, 46:7830 | Cite as

Morphological comparison of isotactic polypropylene molded by water-assisted and conventional injection molding

  • Xianhu Liu
  • Guoqiang Zheng
  • Kun Dai
  • Zhenhua Jia
  • Songwei Li
  • Chuntai Liu
  • Jingbo Chen
  • Changyu Shen
  • Qian Li
Article

Abstract

It is well known that water-assisted injection molding (WAIM) process can be fulfilled based on the melt filling stage of conventional injection molding (CIM) process. However, due to the different physical fields involved during WAIM and CIM processes, WAIM part should exhibit unique morphological features compared with the CIM one. In this study, isotactic polypropylene (iPP) parts were prepared by WAIM and CIM, respectively, and their comparative study on morphology were therefore carried out by means of polarized optical microscopy (POM) and two-dimensional (2D) wide-angle X-ray diffraction (WAXD). POM observations illustrated that the WAIM part exhibits a “skin–core–water channel” structure, while the CIM part shows a typical “skin–core” structure. 2D-WAXD results showed obvious arclike reflections in each position along thickness direction of the WAIM part, indicating a pronounced molecular orientation. Furthermore, a parent–daughter model (or branched shish-kebab structure) appears at 0 and 100 μm for both the parts, and the fraction of daughter lamellae for WAIM part is lower than that of CIM part. As for the 1D-WAXD curves, it is noticed that there is a very tiny (300) reflection of β-form in the CIM part, while it is invisible in all positions of the WAIM part. In addition, the crystallinity and crystalline size L of CIM part are found to be higher than that of WAIM part. Those results demonstrate that water penetration and rapid cooling rate have a significant effect on the morphological features of WAIM part.

Keywords

Water Injection Water Penetration Core Zone Isotactic Polypropylene Crystalline Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank National Natural Science Foundation of China for financial support (Grant No. 50803060, 10872185, and 10872186) and the authors also thank Prof. Guoqiang Pan and Liangbin Li from National Synchrotron Radiation Laboratory (NSRL) in University of Science and Technology of China for their help in synchrotron 2D-WAXD experiment.

Supplementary material

10853_2011_5764_MOESM1_ESM.docx (158 kb)
Supplementary material 1 (DOCX 157 kb)

References

  1. 1.
    Knights M (2002) Plast Technol 48:42Google Scholar
  2. 2.
    Liu SJ, Su PC (2009) Polym Test 28:66CrossRefGoogle Scholar
  3. 3.
    Liu SJ, Lin MJ, Wu YC (2007) Compos Sci Technol 67:1415CrossRefGoogle Scholar
  4. 4.
    Huang HX, Deng ZW (2008) J Appl Polym Sci 108:228CrossRefGoogle Scholar
  5. 5.
    Lin KY, Liu SJ (2010) Macromol Mater Eng 295:342CrossRefGoogle Scholar
  6. 6.
    Liu SJ, Lin WR, Lin KY (2010) Morphological development in water assisted injection molded polyethylene/polyamide-6 blends. Polym Adv Technol. doi: 10.1002/pat.1721
  7. 7.
    Huang HX, Zhou RH (2010) Polym Test 29:235CrossRefGoogle Scholar
  8. 8.
    Liu SJ, Wu YC (2007) Polym Test 26:232CrossRefGoogle Scholar
  9. 9.
    Liu XH, Zheng GQ, Jia ZH, Li SW, Liu CG, Zhang Y, Shao CG, Dai K, Liu BC, Zhang QX, Wang SJ, Liu CT, Chen JB, Peng XF, Shen CY (2011) The hierarchical structure of water-assisted injection molded HDPE: SAXS study. J Appl Polym Sci. (in press)Google Scholar
  10. 10.
    Wang Y, Gao Y, Shi J (2008) J Appl Polym Sci 107:309CrossRefGoogle Scholar
  11. 11.
    Wang Y, Na B, Fu Q, Men YF (2004) Polymer 45:207CrossRefGoogle Scholar
  12. 12.
    Zhu PW, Edward G (2004) Macromolecules 37:2658CrossRefGoogle Scholar
  13. 13.
    Zhu PW, Tung J, Edward G (2005) Polymer 46:10960CrossRefGoogle Scholar
  14. 14.
    Zheng GQ, Yang W, Yin B, Yang MB, Liu CT, Shen CY (2006) J Appl Polym Sci 2006(102):3069CrossRefGoogle Scholar
  15. 15.
    Zheng GQ, Huang L, Yang W, Yang B, Yang MB, Li Q, Shen CY (2007) Polymer 48:5486CrossRefGoogle Scholar
  16. 16.
    Zhong GJ, Li LB, Mendes E, Byeloy D, Fu Q, Li ZM (2006) Macromolecules 39:6771CrossRefGoogle Scholar
  17. 17.
    Zhong GJ, Li ZM, Li LB, Mendes E (2007) Polymer 48:1729CrossRefGoogle Scholar
  18. 18.
    Picken SJ, Aerts J, Visser R, Northolt MG (1990) Macromolecules 23:3849CrossRefGoogle Scholar
  19. 19.
    Kumaraswamy G, Verma RK, Kornfield JA, Yeh F, Hsiao BS (2004) Macromolecules 37:9005CrossRefGoogle Scholar
  20. 20.
    Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Macromolecules 34:5902CrossRefGoogle Scholar
  21. 21.
    Nogales A, Mitchell GR, Vaughan AS (2003) Macromolecules 36:4898CrossRefGoogle Scholar
  22. 22.
    Fujiyama M, Wakino T, Kawasaki Y (1988) J Appl Polym Sci 35:29CrossRefGoogle Scholar
  23. 23.
    Lotz B, Wittmann JC (1986) J Polym Sci Part B 24:1541CrossRefGoogle Scholar
  24. 24.
    Zhu PW, Tung J, Edward G, Nichols L (2008) J Appl Phys 103:124906CrossRefGoogle Scholar
  25. 25.
    Zhu PW, Phillips A, Tung J, Edward G (2005) J Appl Phys 97:104908CrossRefGoogle Scholar
  26. 26.
    Zhu PW, Edward G (2008) J Mater Sci 43:6459CrossRefGoogle Scholar
  27. 27.
    Schrauwen BAG, Breemen LCAv, Spoelstra AB, Govaert LE, Peters GWM, Meijer HEH (2004) Macromolecules 37:8618CrossRefGoogle Scholar
  28. 28.
    Obadal M, Čermák R, Raab M, Vincent V, Commereuc S, Fraïsse F (2006) Polym Degradation Stab 91:459CrossRefGoogle Scholar
  29. 29.
    Li YB, Shen KZ (2008) J Macromol Sci B 47:1000CrossRefGoogle Scholar
  30. 30.
    Bai HW, Wang Y, Zhang ZJ, Han L, Li YL, Liu L, Zhou ZW, Men YF (2009) Macromolecules 42:6647CrossRefGoogle Scholar
  31. 31.
    Bai HW, Wang Y, Song B, Li YL, Liu L (2008) Polym Eng Sci 48:1532CrossRefGoogle Scholar
  32. 32.
    Chen YH, Zhong GJ, Wang Y, Li ZM, Li LB (2009) Macromolecules 42:4343CrossRefGoogle Scholar
  33. 33.
    Kalay G, Bevis MJ (1997) J Polym Sci B 35:241CrossRefGoogle Scholar
  34. 34.
    Fujiyama M (1995) Int Polym Process 10:172Google Scholar
  35. 35.
    Turner-Jones A, Aizelwood JM, Beckett DR (1964) Macromol Chem 75:134CrossRefGoogle Scholar
  36. 36.
    Varga J, Karger-Kocsis J (1995) Polymer 36:4877Google Scholar
  37. 37.
    Alexander LE (1976) X-ray diffraction methods in polymer science. Wiley, New YorkGoogle Scholar
  38. 38.
    Zhu PW, Tung J, Phillips A, Edward G (2006) Macromolecules 39:1821CrossRefGoogle Scholar
  39. 39.
    Kang J, Chen JY, Cao Y, Li HL (2010) Polymer 51:249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xianhu Liu
    • 1
  • Guoqiang Zheng
    • 1
  • Kun Dai
    • 1
  • Zhenhua Jia
    • 1
  • Songwei Li
    • 1
  • Chuntai Liu
    • 1
  • Jingbo Chen
    • 1
  • Changyu Shen
    • 1
  • Qian Li
    • 1
  1. 1.College of Materials Science and Engineering, The Key Laboratory of Advanced Materials Processing & Mold of Ministry of EducationZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations