Skip to main content
Log in

Random geometric graphs for modelling the pore space of fibre-based materials

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A stochastic network model is developed which describes the 3D morphology of the pore space in fibre-based materials. It has the form of a random geometric graph, where the vertex set is modelled by random point processes and the edges are put using tools from graph theory and Markov chain Monte Carlo simulation. The model parameters are fitted to real image data gained by X-ray synchrotron tomography. In particular, they are specified in such a way that the distributions of vertex degrees and edge lengths, respectively, coincide to a large extent for real and simulated data. Furthermore, the network model is used to introduce a morphology-based notion of pores and their sizes. The model is validated by considering physical characteristics which are relevant for transport processes in the pore space, like geometric tortuosity, i.e., the distribution of shortest path lengths through the material relative to its thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abdel-Ghani MS, Davies GA (1985) Chem Eng Sci 40:117

    Article  CAS  Google Scholar 

  2. Armatas GS (2006) Chem Eng Sci 61:4662

    Article  CAS  Google Scholar 

  3. Berhan L, Yi YB, Sastry AM (2004) J Appl Phys 95:5027

    Article  CAS  Google Scholar 

  4. Benes V, Rataj J (2004) Stochastic geometry: selected topics. Kluwer Academic Publishers, Boston

    Google Scholar 

  5. Blunt MJ, Jackson MD, Piri M, Valvatne PH (2002) Adv Water Resour 25:1069

    Article  CAS  Google Scholar 

  6. Casella G, Berger RL (2002) Statistical inference, 2nd ed. Duxbury, Pacific Grove

    Google Scholar 

  7. Daley DJ, Vere-Jones D (2003) An introduction to the theory of point processes volume I: elementary theory and methods. Springer, New York

    Google Scholar 

  8. Diestel R (2005) Graph theory. Springer, Heidelberg

    Google Scholar 

  9. Eichhorn SJ, Sampson WW (2005) J Royal Soci Interface 2:309

    Article  Google Scholar 

  10. Eichhorn SJ, Sampson WW (2010) J Royal Soc Interface 7:641

    Article  CAS  Google Scholar 

  11. Fourard C, Malandain G, Prohaska S, Westerhoff M (2006) IEEE Trans Med Imaging 156:B1339

    Google Scholar 

  12. Gelfand AE, Diggle PJ, Fuentes M, Guttorp P (2010) Handbook of spatial statistics. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  13. Gostick JT, Ioannidis MA, Fowler MW, Pritzker MD (2007) J Power Sources, 173:277

    Article  CAS  Google Scholar 

  14. Hartnig C, Kuhn R, Krüger P, Manke I, Kardjilov N, Goebbels J, Müller BR, Riesemeier H (2008) MP Mater Test 50:609

    Article  CAS  Google Scholar 

  15. Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester

    Google Scholar 

  16. Inoue G, Matsukuma Y, Minemoto M (2007) Proceedings of the 2nd European Fuel Cell Technology and Applications Conference, EFC2007-39024

  17. Inoue G, Yoshimoto T, Matsukuma Y, Minemoto M (2008) J Power Sources 175:145

    Article  CAS  Google Scholar 

  18. Jähne B (2005) Digital image processing. 6th revised and extended ed. Springer, Berlin

    Google Scholar 

  19. Jungnickel D (1999) Graphs, networks and algorithms. Springer, Berlin

    Book  Google Scholar 

  20. Keil F (1999) Diffusion und Chemische Reaktionen in der Gas/Feststoff–Katalyse. Springer, Berlin

    Book  Google Scholar 

  21. Kendall WS, Molchanov I (eds) (2010) New perspectives in stochastic geometry. Springer, Berlin

    Google Scholar 

  22. Kroese DP, Taimre T, Botev ZI (2011) Handbook of Monte Carlo methods. Wiley, Hoboken

    Book  Google Scholar 

  23. Lahiri SN (2003) Resampling methods for dependent data. Springer, New York

    Book  Google Scholar 

  24. Leóny León CA (1998) Adv Colloid Interface Sci 76(77):341

    Article  Google Scholar 

  25. Maheshwaria PH, Mathur RB, Dhamia TL (2008) Electrochim Acta 54:655

    Article  Google Scholar 

  26. Manke I, Hartnig C, Grünerbel M, Lehnert W, Kardjilov N, Haibel A, Hilger A, Banhart J (2007) Appl Phys Lett 90:174105-1

    Google Scholar 

  27. Mathias MF, Roth J, Fleming J, Lehnert W (2003) In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells, Vol III, Chap 42. Wiley, Chichester

    Google Scholar 

  28. Møller J, Waagepetersen RP (2004) Statistical inference and simulation for spatial point processes. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  29. Münch B, Holzer L (2008) J Am Ceram Soc 91:4059

    Article  Google Scholar 

  30. Ohser J, Schladitz K (2009) 3D images of materials structures—processing and analysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  31. Piekaar HW, Clarenburg LA (1967) Eng Sci 22:1399

    Article  Google Scholar 

  32. Saito T, Toriwaki J-I (1994) Pattern Recogn 27:1551

    Article  Google Scholar 

  33. Sampson WW (2003) J Mater Sci 38:1617. doi:https://doi.org/10.1023/A:1023298820390

    Article  CAS  Google Scholar 

  34. Sampson WW, Urquhart SJ (2008) J Porous Mater 15:411

    Article  Google Scholar 

  35. Schlather M (2001) Bernoulli 7:99

    Article  Google Scholar 

  36. Schulz VP, Becker J, Wiegmann A, Mukherjee PP, Wang C-Y (2007) J Electrochem Soci 154:B419

    Article  CAS  Google Scholar 

  37. Shen L, Chen Z (2007) Chem Eng Sci 62:3748

    Article  CAS  Google Scholar 

  38. Sinha PK, Mukherjee PP, Wang C-Y (2007) J Mater Chem 17:3089

    Article  CAS  Google Scholar 

  39. Sinha PK, Wang C-Y (2007) Electrochim Acta 52:7936

    Article  CAS  Google Scholar 

  40. Soille P (1999) Morphological image analysis. Springer, Berlin

    Book  Google Scholar 

  41. Stoyan D, Kendall WS, Mecke J (1995) Stochastic geometry and its applications, 2nd ed. Wiley, Chichester

    Google Scholar 

  42. Stoyan D (1984) Math Nachr 116:197

    Article  Google Scholar 

  43. Thiedmann R, Fleischer F, Hartnig C, Lehnert W, Schmidt V (2008) J Electrochem Soc 155:B391

    Article  CAS  Google Scholar 

  44. Thiedmann R, Hartnig C, Manke I, Schmidt V, Lehnert W (2009) J Electrochem Soc 156:B1339

    Article  CAS  Google Scholar 

  45. Thulasiraman K, Swamy MNS (1992) Graphs: theory and algorithms. Wiley, Chichester

    Book  Google Scholar 

  46. Tripathi A, Vijay S (2009) Discret Math 265:417

    Article  Google Scholar 

  47. Weil H (1954) Ann Math Stat 25:168

    Article  Google Scholar 

  48. Yoneda M, Takimoto M, Koshizuka S (2007) ECS Trans 11:629

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the German Federal Ministry for Education and Science (BMBF) under Grant No. 03SF0324C/E/F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Thiedmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiedmann, R., Manke, I., Lehnert, W. et al. Random geometric graphs for modelling the pore space of fibre-based materials. J Mater Sci 46, 7745–7759 (2011). https://doi.org/10.1007/s10853-011-5754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5754-7

Keywords

Navigation