Skip to main content
Log in

Prediction of the long-term behaviour of high modulus fibres using the stepped isostress method (SSM)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new accelerated technique, called the stepped isostress method (SSM), is presented that allows accelerated testing of materials to determine their creep response, and in particular, their creep-rupture behaviour. The approach in SSM testing is similar to the more familiar stepped isothermal method (SIM) but the acceleration is now obtained by increasing the stress in steps rather than stepping the temperature. Additional stress provides energy to the system in an analogue of the effect of heat in SIM. This method relies on the time–stress superposition concept. Various theories, assumptions and the different steps of the method are described in detail. This method is advantageous when compared with SIM because there is no need to use elevated temperatures, which may affect the chemical properties of the tested materials. The applicability of this method is investigated. The paper presents testing on Kevlar 49 yarns using SSM. The resulting creep curves and rupture times are compared with those obtained from SIM and conventional creep testing carried out in the past. The results show good correlation between the three test methods. The ability to carry out reliable creep tests in a reasonable time at low stress levels allows a designer to have much more confidence in the data for creep-rupture behaviour for fibres and allows confident prediction of structural lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Guimaraes GB (1988) Parallel-lay aramid ropes for use in structural engineering. University of London, London

    Google Scholar 

  2. Burgoyne, CJ (1992) In: Doran DK (ed) Construction materials reference book, Butterworths, Oxford

  3. Gerritse A, Taerwe L (1999) In: Proceedings of the 4th international symposium on fiber reinforced polymer reinforcement for reinforced concrete structures, ACI SP-188

  4. Giannopoulos IP (2009) Creep and creep-rupture behaviour of aramid fibres. University of Cambridge, Cambridge

    Google Scholar 

  5. Giannopoulos IP, Burgoyne CJ (2009) Struct Build 162(4):221

    Article  Google Scholar 

  6. Chiao TT, Wells JE, Moore RL, Hamstad MA (1974) In: 3rd conference on composite materials: testing and design

  7. Phoenix SL, Wu EM (1983) In: Hashin Z, Herakovich CT (eds) Mechanics of composites materials: recent advances, Pergamon Press, New York

  8. Glaser RE, Moore RL, Chiao TT (1984) Compos Technol Rev 6(1):26

    Article  CAS  Google Scholar 

  9. Wagner HD, Schwartz P, Phoenix SL (1986) J Mater Sci 21:1868. doi:https://doi.org/10.1007/BF00547921

    Article  CAS  Google Scholar 

  10. Wu HF, Phoenix SL, Schwartz P (1988) J Mater Sci 23:1851. doi:https://doi.org/10.1007/BF01115731

    Article  CAS  Google Scholar 

  11. Phoenix SL, Grimes-Ledesma L, Thesken JC, Murthy PLN (2006) In: Proceedings of the american society for composites, 21st annual technical conference, 17–20 Sep 2006, The University of Michigan-Dearborn, Dearborn

  12. Chambers JJ (1986) Parallel-lay aramid ropes for use as tendons in prestressing concrete. University of London, London

    Google Scholar 

  13. Guimaraes GB, Burgoyne CJ (1992) J Mater Sci 27:2473. doi:https://doi.org/10.1007/BF0110506

    Article  CAS  Google Scholar 

  14. Yamaguchi T, Kato Y, Nishimura T, Uomoto T (1997) In: Proceedings of the 3rd international symposium on non-metallic reinforcement for concrete structures (FRPRCS-3), vol 2, Sapporo

  15. Ando N, Matsukawa T, Hattori M, Mashima M (1997) In: Proceedings of the 3rd international symposium on non-metallic reinforcement for concrete structures (FRPRCS-3), vol 2, Sapporo

  16. Ward IM, Sweeney J (2004) An introduction to the mechanical properties of solid polymers. Wiley, London

  17. Thornton JS, Paulson JN, Sandri D (1998) In: Sixth international conference on geosynthetics, Atlanta

  18. Alwis KGNC, Burgoyne CJ (2008) J Mater Sci 43(14):4789. doi:https://doi.org/10.1007/s10853-008-2676-0

    Article  CAS  Google Scholar 

  19. Lai J, Bakker A (1995) Polymer 36(1):93

    Article  CAS  Google Scholar 

  20. Hadid M, Rechak S, Tati A (2004) Mater Sci Eng 385:54

    Article  Google Scholar 

  21. Jazouli S, Luo W, Bremand F, Vu-Khanha T (2006) Key Eng Mater 340–341:1091

    Google Scholar 

  22. Ma CCM, Tai NH, Wu SH, Lin SH, Wu JF, Lin JM (1997) Composites B 28B:407

    Article  CAS  Google Scholar 

  23. Luo W, Wang C (2007) Key Eng Mater 340–341:1091

    Article  Google Scholar 

  24. Farquhar D, Mutrelle FM, Phoenix SL, Smith RL (1989) J Mater Sci 24:2151. doi:https://doi.org/10.1007/BF02385436

    Article  CAS  Google Scholar 

  25. Ericksen RH (1976) Composites 7:189

    Article  CAS  Google Scholar 

  26. Ericksen RH (1985) Polymer 26:733

    Article  CAS  Google Scholar 

  27. Alwis KGNC (2003) Accelerated testing for long-term stress-rupture behaviour of aramid fibres. University of Cambridge, Cambridge

    Google Scholar 

  28. Yang HH (1993) Kevlar aramid fiber. Wiley, Chichester

  29. Du Pont EI (1991) Data manual for fibre optics and other cables. EI Du Pont de Nemours and Co (Inc.), Wilmington

    Google Scholar 

  30. Giannopoulos IP, Burgoyne CJ (2009) In: 16th Concrete Conference, Paphos, 21–23 Oct 2009

  31. Giannopoulos IP, Burgoyne CJ (2008) In: 5th conference on advanced composite materials in bridges and structures (ACMBS-V) Paper 79, Winnipeg

  32. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100(31):12771

    Article  CAS  Google Scholar 

  33. Slutsker AI (1989) Makromol Chem 27:207

    Article  CAS  Google Scholar 

  34. Bosman M, Van der Zwaag S, Schenkels FAM (1995) J Mater Sci Lett 14:1440

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis P. Giannopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannopoulos, I.P., Burgoyne, C.J. Prediction of the long-term behaviour of high modulus fibres using the stepped isostress method (SSM). J Mater Sci 46, 7660–7671 (2011). https://doi.org/10.1007/s10853-011-5743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5743-x

Keywords

Navigation