Journal of Materials Science

, Volume 46, Issue 23, pp 7603–7610 | Cite as

Formation of semitransparent CuAlSe2 thin films grown on transparent conducting oxide substrates by selenization



Wide band-gap semiconductors have been studied for applications as buffer layers in thin film solar cells and as top cell in tandem devices. CuAlSe2 (CAS) thin films were deposited onto bare and two different transparent conducting oxide (TCO)-coated glass substrates, In2O3:Sn (ITO) and ZnO:Al (AZO), by a two stage process consisting on the selenization of metallic precursor layers. Homogeneous and crystalline formation of CAS thin films is not trivial and it is strongly influenced by selenization conditions, type of substrate and the film thicknesses. Under certain conditions, polycrystalline CuAlSe2 thin films with chalcopyrite structure and preferential orientation along the (112) plane were obtained onto bare glass susbtrates. However, formation and crystallization of homogeneous CAS thin films was promoted by transparent conducting oxides (ITO and AZO)-coated glass substrates and take place in a wide range of thicknesses and Se amounts with high degree of reproducibility. TCO-coated substrates promoted larger grains when the CAS compound was formed. The band-gap energy, preferential orientation, crystallite size and the average surface roughness varied depending on the film thickness and type of substrate.


Chalcopyrite In2O3 Soda Lime Glass Cu2Se Chalcopyrite Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study has been supported by the Spanish Ministry of Science and Innovation through the TEC2007-66506-C02-01/MIC project and CIEMAT Photovoltaic Program.


  1. 1.
    Shirakata S, Chichibu S, Matsumoto S, Isomura S (1993) Jpn J Appl Phys 32:L167CrossRefGoogle Scholar
  2. 2.
    Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) Prog Photovoltaics 16:235CrossRefGoogle Scholar
  3. 3.
    Marsillac S, Paulson PD, Haimbodi MW, Birkmire RW, Shafarman WN (2002) Appl Phys Lett 81:1350CrossRefGoogle Scholar
  4. 4.
    Rockett A, Birkmire RW (1991) J Appl Phys 70:R81CrossRefGoogle Scholar
  5. 5.
    Reddy YBK, Raja VS (2006) Mater Chem Phys 100:152CrossRefGoogle Scholar
  6. 6.
    Reddy YBK, Raja VS (2002) In: Conference record of the 29th IEEE photovoltaic specialists conference, New Orleans, p 664Google Scholar
  7. 7.
    Marsillac S, Benchouk K, ElMoctar C, Bernede JC, Pouzet J, Khellil AJamali M, Khellil A, Jamali M (1997) J Phys III 7:2165Google Scholar
  8. 8.
    Bernede JC, Marsillac S, Moctar El, Conan A (1997) Phys Stat Sol a Appl Res 161:185CrossRefGoogle Scholar
  9. 9.
    López-García J, Guillen C (2009) Thin Solid Films 517:2240CrossRefGoogle Scholar
  10. 10.
    Choi IH, Yu PY (2009) Current Appl Phys 9:151CrossRefGoogle Scholar
  11. 11.
    Nakada T, Hirabayashi Y, Tokado T, Ohmori D, Mise T (2004) Sol Energy 77:739CrossRefGoogle Scholar
  12. 12.
    Nakada T (2005) Thin Solid Films 480:419–425CrossRefGoogle Scholar
  13. 13.
    Tokado TNakada T (2003) In: Proceedings of 3rd world conference on photovoltaic energy conversion, Osaka, vols a-C 539Google Scholar
  14. 14.
    Nishiwaki S, Siebentritt S, Walk P, Lux-Steiner MC (2003) Prog Photovolt 11:243–248CrossRefGoogle Scholar
  15. 15.
    Young DL, Abushama J, Noufi R, Li XN, Keane J, Gessert TA, Ward JS, Contreras M, Symko-Davies M, Coutts TJ (2002) In: Conference record of the 29th IEEE photovoltaic specialists conference, New Orleans, p 608Google Scholar
  16. 16.
    Guillén C, Herrero J (2008) Vacuum 82:668CrossRefGoogle Scholar
  17. 17.
    Guillén C, Herrero J (2006) Thin Solid Films 510:260CrossRefGoogle Scholar
  18. 18.
    Caballero R, Guillen C (2005) Sol. Energy Mater Sol Cells 86:1CrossRefGoogle Scholar
  19. 19.
    Jost S, Hergert F, Hock R, Purwins M, Enderle R (2006) Phys Stat Sol a Appl Mater Sci 203:2581CrossRefGoogle Scholar
  20. 20.
    López-García J, Guillen C (2009) Phys Stat Sol a Appl Mater Sci 206:84CrossRefGoogle Scholar
  21. 21.
    El-Boragy M, Szepan R, Schubert K (1972) J Less Common Met 29:133CrossRefGoogle Scholar
  22. 22.
    Nozaki HS, Shibata K, Onoda M, Yukino K, Ishii M (1994) Mater. Res. Bull. 29:203–206CrossRefGoogle Scholar
  23. 23.
    Bradley AJ, Nature 168: 661Google Scholar
  24. 24.
    Chichibu S, Shishikura M, Ino J, Matsumoto S (1991) J. Appl. Phys. 70:1648–1651CrossRefGoogle Scholar
  25. 25.
    López-García J, Guillén, C. (2008) Proc 23rd European Photovoltaic Solar Energy Conference Valencia, SpainGoogle Scholar
  26. 26.
    West AR (1984) Solid state chemistry and its applications. Wiley, New YorkGoogle Scholar
  27. 27.
    Reddy YBK, Raja VS, Sreedhar B (2006) J Phys D Appl Phys 39:5124CrossRefGoogle Scholar
  28. 28.
    Marsillac S, Wahiba TB, El Moctar C, Bernede JC, Khelil A (2002) Sol Energy Mater Sol Cells 71:425CrossRefGoogle Scholar
  29. 29.
    Joseph CM, Menon CS (1997) Sol State Phenomena 55:226CrossRefGoogle Scholar
  30. 30.
    Halgand E, Bernède JC, Marsillac S, Kessler J (2005) Thin Solid Films 480–481:443CrossRefGoogle Scholar
  31. 31.
    Green MA (1982) Solar cells-operating principles technology and system applications. Prentice-hall, Englewood CliffsGoogle Scholar
  32. 32.
    Bernede JC, Marsillac S, ElMoctar CO, Chouk KB, Khelil A (2001) J Mater Sci 36:87. doi: 10.1023/A:1004894825543 CrossRefGoogle Scholar
  33. 33.
    El Moctar CO, Kambas K, Marsillac S, Anagnostopoulos A, Bernede JC, Benchouck K (2000) Thin Solid Films 371:195CrossRefGoogle Scholar
  34. 34.
    Korzoun BV, Makovetskaya LA, Savchuk VA, Rubtsov VA, Popelnyuk GP, Chernyakova AP (1995) J Electron Mater 24:903CrossRefGoogle Scholar
  35. 35.
    López-García J, Maffiotte C, Guillén C (2010) Sol. Energy Mater Sol Cells 94:1263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of EnergyCIEMATMadridSpain

Personalised recommendations