Journal of Materials Science

, 46:7588 | Cite as

Influence of sputtering pressure on the structure and ionic conductivity of thin film amorphous electrolyte



Ionic conducting thin film amorphous electrolytes are promising candidates for microelectronics applications. This study presents an investigation into the structure and composition of lithium phosphorus oxynitride (LiPON) thin film electrolyte prepared using radio frequency (RF) sputtering on Li3PO4 target. The ionic conductivity of LiPON thin films has been dramatically improved by decreasing N2 pressure. X-ray photoelectron spectra (XPS) were used to determine the structure and composition of LiPON thin films. It was found that increasing the N2 pressure during the deposition process resulted in a greatly decreased formation of triply coordinated –N<(Nt) as compared to doubly coordinated –N=(Nd) in LiPON thin films. These results indicate that the Nt structural unit plays an important role in the improvement of ionic conductivity as compared to the Nd structural unit. It also shows that PO2N2 tetrahedra with two Nt structural units exist in LiPON thin films at low N2 pressures. Consequently, the improved ionic conductivity of the LiPON thin film deposited at low pressure results from the existence of PO2N2 tetrahedra with two Nt structural units in LiPON thin film. PO2N2 tetrahedra with two Nt structural units provides higher cross-linking density of the glass network and lower electrostatic energy than with two Nd structural units.


Ionic Conductivity Glass Network Maximum Ionic Conductivity Thin Film Electrolyte LiPON Thin Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vinatier P, Hamon Y (2006) In: Baranovski S (ed) Charge transport in disordered solids with applications in electronics. John Wiley and Sons, New YorkGoogle Scholar
  2. 2.
    Jee SH, Oh JY, Ahn HS, Kim D-J, Wikle HC III, Kim SH, Yoon YS (2010) J Mater Sci 45:1709. doi: 10.1007/s10853-009-3904-y CrossRefGoogle Scholar
  3. 3.
    Bai Y, Knittlmayer C, Gledhill S, Lauermann I, Fischer C-H, Weppner W (2009) Ionics 15:11CrossRefGoogle Scholar
  4. 4.
    Lu H-W, Yu L, Zeng W, Li Y-S, Fu Z-W (2008) Electrochem Solid State Lett 8:A140CrossRefGoogle Scholar
  5. 5.
    Lee M-J, Kim JS, Choi SH, Lee JJ, Kim SH, Jee SH, Yoon YS (2006) J Electroceram 17(2–4):639CrossRefGoogle Scholar
  6. 6.
    Yoon YS, Cho WI, Lim JH, Choi DJ (2001) J Power Sources 101:126CrossRefGoogle Scholar
  7. 7.
    Yoo SJ, Lim JW, Choi B, Sung Y-E (2007) J Electrochem Soc 154:6CrossRefGoogle Scholar
  8. 8.
    Yoo SJ, Lim JW, Sung Y-E (2006) Sol Energy Mater Sol Cells 90:477CrossRefGoogle Scholar
  9. 9.
    Rho N-S, Lee S-D, Kwon H-S (1999) Scripta Mater 42:43CrossRefGoogle Scholar
  10. 10.
    Bates JB, Dudney NJ, Gruzalski GR, Zuhr RA, Choudhury A, Luck CF, Robertson JD (1993) J Power Sources 1–3:103CrossRefGoogle Scholar
  11. 11.
    Yu X, Bates JB, Jellison GE Jr, Hart FX (1997) J Electrochem Soc 2:524CrossRefGoogle Scholar
  12. 12.
    Choi CH, Cho WI, Cho BW, Kim HS, Yoon YS, Tak YS (2002) Electrochem Solid State Lett 1:A14CrossRefGoogle Scholar
  13. 13.
    Bates JB, Gruzalski GR, Dudney NJ, Luck CF, Yu X (1994) Solid State Ionics 70–71:619CrossRefGoogle Scholar
  14. 14.
    Muñoz F, Durán A, Pascual L, Montagne L, Revel B, Rodrigues ACM (2008) Solid State Ionics 179:574CrossRefGoogle Scholar
  15. 15.
    Wang B, Kwak BS, Sakes BC, Bates JB (1995) J Non Cryst Solids 183:297CrossRefGoogle Scholar
  16. 16.
    Li C-L, Fu Z-W (2007) J Electrochem Soc 154:A784CrossRefGoogle Scholar
  17. 17.
    Le Sauze A, Montagne L, Palavit G, Marchand R (2001) J Non Cryst Solids 293–295:81CrossRefGoogle Scholar
  18. 18.
    Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z (2005) Solid State Ionics 176:2371CrossRefGoogle Scholar
  19. 19.
    Yu XH, Bates JB, Jellison GE, Har l FX (1997) J Electrochem Soc 144:524CrossRefGoogle Scholar
  20. 20.
    Aswal DK, Muthe KP, Tawde S, Chodhury S, Bagkar N, Singh A, Gupta SK, Yakhmi JV (2002) J Cryst Growth 236:661CrossRefGoogle Scholar
  21. 21.
    Rochefort D, Dabo P, Guay D, Sherwood PMA (2003) Electrochim Acta 48:4245CrossRefGoogle Scholar
  22. 22.
    Park HY, Nam SC, Lim YC, Choi KG, Lee KC, Park GB, Lee SR, Kim HP, Cho SB (2006) J Electroceram 17:1023CrossRefGoogle Scholar
  23. 23.
    Unuma H, Sakka S (1987) J Mater Sci Lett 6:996CrossRefGoogle Scholar
  24. 24.
    Unuma H, Komori K, Sakka S (1987) J Non Cryst Solids 95&96:913CrossRefGoogle Scholar
  25. 25.
    Brückner R, Chun H-U, Goretzki H, Sammet M (1980) J Non Cryst Solids 42:49CrossRefGoogle Scholar
  26. 26.
    Le Sauze A, Montagne L, Palavit G, Fayon F, Marchand R (2000) J Non Cryst Solids 263&264:139CrossRefGoogle Scholar
  27. 27.
    Reidmeyer MR, Day DE (1995) J Non Cryst Solids 8:201CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Aerospace and Materials EngineeringNational University of Defense TechnologyChangshaPeople’s Republic of China
  2. 2.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  3. 3.Nokia Research CentreCambridgeUK

Personalised recommendations