Journal of Materials Science

, Volume 46, Issue 19, pp 6332–6338 | Cite as

Grafting polymers to titania nanoparticles by radical polymerization initiated by diazonium salt

  • Alice Mesnage
  • Mohamed Abdel Magied
  • Pardis Simon
  • Nathalie Herlin-Boime
  • Pascale Jégou
  • Guy Deniau
  • Serge Palacin


The grafting of biocompatible poly(hydroxyethyl) methacrylate (PHEMA) by a very simple method onto titanium dioxide nanoparticles is reported. The selected grafting process is based on the chemical reduction of diazonium salts by reducing agents in presence of the vinylic monomer. As previously demonstrated on flat surfaces, it leads to strongly grafted and stable polymer films and has many advantages residing in a short one-step reaction occurring at atmospheric pressure, ambient air and room temperature in water. TiO2 nanoparticles were synthesized by laser pyrolysis, giving nanoparticles with controlled size and composition. The coating, the composition, the chemical structure, and the grafted PHEMA quantities of the resulting products were investigated by Transmission electron microscopy, Infrared-attenuated total reflection, X-ray photoelectron spectroscopy, and Thermogravimetric analysis. It was demonstrated that the PHEMA shell was successfully chemically grafted onto the surface of the TiO2 core without any significant influence on the morphology of the nanoparticles.


TiO2 Nanoparticles HEMA PHEMA Vinylic Monomer Diazonium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Serpone N, Dondi D, Albini A (2007) Inorg Chim Acta 360:794CrossRefGoogle Scholar
  2. 2.
    del Pino AP, Serra P, Morenza JL (2002) Thin Solid Films 415:201CrossRefGoogle Scholar
  3. 3.
    Gratzel M (2001) Nature 414:338CrossRefGoogle Scholar
  4. 4.
    Oregan B, Gratzel M (1991) Nature 353:737CrossRefGoogle Scholar
  5. 5.
    Varghese OK, Paulose M, LaTempa TJ, Grimes CA (2009) Nano Lett 9:731CrossRefGoogle Scholar
  6. 6.
    Chen X, Dong SJ (2003) Biosens Bioelectron 18:999CrossRefGoogle Scholar
  7. 7.
    El Fray M, Boccaccini AR (2005) Mater Lett 59:2300CrossRefGoogle Scholar
  8. 8.
    Han KQ, Yu MH (2006) J Appl Polym Sci 100:1588CrossRefGoogle Scholar
  9. 9.
    Zou JP, Zhao Y, Yang MJ, Dan Y (2007) J Appl Polym Sci 104:2792CrossRefGoogle Scholar
  10. 10.
    Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA, Durstock MF, Vaia RA (2010) Chem Mater 22:1749CrossRefGoogle Scholar
  11. 11.
    Jiang B, Zu XT, Tang FY, Wu ZH, Lu J, Wei QR, Zhang XD (2006) J Appl Polym Sci 100:3510CrossRefGoogle Scholar
  12. 12.
    Zhong SF, Ou QR, Meng YD (2007) J Wuham Univ Technol (Mater Sci Ed) 22:303Google Scholar
  13. 13.
    Shirai Y, Kawatsura K, Tsubokawa N (1999) Prog Org Coat 36:217CrossRefGoogle Scholar
  14. 14.
    Lowes BJ, Bohrer AG, Tran T, Shipp DA (2009) Polym Bull 62:281CrossRefGoogle Scholar
  15. 15.
    Tsubokawa N, Ishida H (1992) Polym J 24:809CrossRefGoogle Scholar
  16. 16.
    Li GH (2009) Surf Rev Lett 16:149CrossRefGoogle Scholar
  17. 17.
    Matsuno R, Otsuka H, Takahara A (2006) Soft Matter 2:415CrossRefGoogle Scholar
  18. 18.
    Xu H, Shi JX, Sun T (2008) J Adv Mater 40:27Google Scholar
  19. 19.
    Zan L, Liu ZS, Zhong JC, Peng ZG (2004) J Mater Sci 39:3261. doi: 10.1023/B:JMSC.0000025874.78279.f0 CrossRefGoogle Scholar
  20. 20.
    Deng C, James PF, Wright PV (1998) J Mater Chem 8:153CrossRefGoogle Scholar
  21. 21.
    Fan XW, Lin LJ, Messersmith PB (2006) Compos Sci Technol 66:1198CrossRefGoogle Scholar
  22. 22.
    Hojjati B, Charpentier PA (2008) J Polym Sci A 46:3926CrossRefGoogle Scholar
  23. 23.
    Mevellec V, Roussel S, Tessier L, Chancolon J, Mayne-L’Hermite M, Deniau G, Viel P, Palacin S (2007) Chem Mater 19:6323CrossRefGoogle Scholar
  24. 24.
    Mesnage A, Esnouf S, Jegou P, Deniau G, Palacin S (2010) Chem Mater 22:6229CrossRefGoogle Scholar
  25. 25.
    Bélanger D, Pinson J (2011) Chem Soc Rev. doi: 10.1039/c1030cs00149j
  26. 26.
    Mahouche-Chergui S, Gam-Derouich S, Mangeney C, Chehimi M (2011) Chem Soc Rev. doi: 10.1039/c1030cs00179a
  27. 27.
    Mendes P, Belloni M, Ashworth M, Hardy C, Nikitin K, Fitzmaurice D, Critchley K, Evans S, Preece J (2003) ChemPhysChem 4:884CrossRefGoogle Scholar
  28. 28.
    Tessier L, Chancolon J, Alet PJ, Trenggono A, Mayne-L’Hermite M, Deniau G, Jegou P, Palacin S (2008) Phys Status Solidi A 205:1412CrossRefGoogle Scholar
  29. 29.
    Wu W, Tsarevsky NV, Hudson JL, Tour JM, Matyjaszewski K, Kowalewski T (2007) Small 3:1803CrossRefGoogle Scholar
  30. 30.
    Abiman P, Wildgoose GG, Compton RG (2008) Int J Electrochem Sci 3:104Google Scholar
  31. 31.
    Brunetti FG, Herrero MA, Munoz JD, Diaz-Ortiz A, Alfonsi J, Meneghetti M, Prato M, Vazquez E (2008) J Am Chem Soc 130:8094CrossRefGoogle Scholar
  32. 32.
    Dyke CA, Stewart MP, Maya F, Tour JM (2004) SynLett 155Google Scholar
  33. 33.
    Schmidt G, Gallon S, Esnouf S, Bourgoin JP, Chenevier P (2009) Chem Eur J 15:2101CrossRefGoogle Scholar
  34. 34.
    Ghosh D, Pradhan S, Chen W, Chen SW (2008) Chem Mater 20:1248CrossRefGoogle Scholar
  35. 35.
    Dahoumane SA, Nguyen MN, Thorel A, Boudou JP, Chehimi MM, Mangeney C (2009) Langmuir 25:9633CrossRefGoogle Scholar
  36. 36.
    Sinitskii A, Dimiev A, Corley DA, Fursina AA, Kosynkin DV, Tour JM (2010) ACS Nano 4:1949CrossRefGoogle Scholar
  37. 37.
    Zhu Y, Higginbotham AL, Tour JM (2009) Chem Mater 21:5284CrossRefGoogle Scholar
  38. 38.
    Haight R, Sekaric L, Afzali A, Newns D (2009) Nano Lett 9:3165CrossRefGoogle Scholar
  39. 39.
    Collins G, Fleming P, O’Dwyers C, Morris MA, Holmes JD (2011) Chem Mater 23:1883CrossRefGoogle Scholar
  40. 40.
    Gam-Derouich S, Carbonnier B, Turmine M, Lang P, Jouini M, Ben Hassen-Chehimi D, Chehimi MM (2010) Langmuir 26:11830CrossRefGoogle Scholar
  41. 41.
    Matrab T, Nguyen MN, Mahouche S, Lang P, Badre C, Turmine M, Girard G, Bai JB, Chehimi M (2008) J Adhes 84:684CrossRefGoogle Scholar
  42. 42.
    Tessier L (2009) PhD thesis (defended in October 2009). University Pierre and Marie Curie, ParisGoogle Scholar
  43. 43.
    Viel P, Le XT, Huc V, Bar J, Benedetto A, Le Goff A, Filoramo A, Alamarguy D, Noel S, Baraton L, Palacin S (2008) J Mater Chem 18:5913CrossRefGoogle Scholar
  44. 44.
    Le XT, Viel P, Jegou P, Garcia A, Berthelot T, Bui TH, Palacin S (2010) J Mater Chem 20:3750CrossRefGoogle Scholar
  45. 45.
    Maskrot H, Herlin-Boime N, Leconte Y, Jursikova K, Reynaud C, Vicens J (2006) J Nanopart Res 8:351CrossRefGoogle Scholar
  46. 46.
    Pignon B, Maskrot H, Ferreol VG, Leconte Y, Coste S, Gervais M, Pouget T, Reynaud C, Tranchant JF, Herlin-Boime N (2008) Eur J Inorg Chem 6:883Google Scholar
  47. 47.
    Simon P, Pignon B, Miao B, Coste-Leconte S, Leconte Y, Marguet S, Jegou P, Bouchet-Fabre B, Reynaud C, Herlin-Boime N (2010) Chem Mater 22:3704CrossRefGoogle Scholar
  48. 48.
    Tessier L, Deniau G, Charleux B, Palacin S (2009) Chem Mater 21:4261CrossRefGoogle Scholar
  49. 49.
    Simon-Deckers A, Gouget B, Mayne-L’Hermite M, Herlin-Boime N, Reynaud C, Carriere M (2008) Toxicology 253:137CrossRefGoogle Scholar
  50. 50.
    Doppelt P, Hallais G, Pinson J, Podvorica F, Verneyre S (2007) Chem Mater 19:4570CrossRefGoogle Scholar
  51. 51.
    Laforgue A, Addou T, Belanger D (2005) Langmuir 21:6855CrossRefGoogle Scholar
  52. 52.
    Rosario-Castro BI, Fachini ER, Hernandez J, Perez-Davis ME, Cabrera CR (2006) Langmuir 22:6102CrossRefGoogle Scholar
  53. 53.
    Yu SSC, Tan ESQ, Jane RT, Downard AJ (2007) Langmuir 23:11074CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Alice Mesnage
    • 1
  • Mohamed Abdel Magied
    • 1
  • Pardis Simon
    • 2
  • Nathalie Herlin-Boime
    • 2
  • Pascale Jégou
    • 1
  • Guy Deniau
    • 1
  • Serge Palacin
    • 1
  1. 1.CEA, IRAMIS, SPCSI Chemistry of Surfaces and Interfaces GroupGif-sur-YvetteFrance
  2. 2.CEA, IRAMIS, SPAM-LFP, CEA-CNRS URA 2453Gif-sur-YvetteFrance

Personalised recommendations