Journal of Materials Science

, Volume 46, Issue 23, pp 7431–7436 | Cite as

Chromium influence on rhombohedral twinning in sapphire

  • M. Castillo-Rodríguez
  • A. Muñoz
  • J. Castaing
  • P. Veyssière
  • A. Domínguez-Rodríguez


Mechanical tests have been performed on sapphire doped with four different concentrations of chromium at temperatures between 800 and 1,000 °C. Samples were cut to favor rhombohedral twinning, which is the softest deformation mode of sapphire that inevitably leads to the failure of this material. We have investigated the effect of Cr doping on the rhombohedral twinning. The mechanical test results show that Cr atoms inhibit rhombohedral twinning, which appears to be athermal in the temperature range studied. An increase in the twinning-resolved stress is clearly observed. For 9,540 ppm Cr, the twinning-resolved stress becomes about three times higher than for undoped sapphire, potentially increasing its technological applications in the industry. The examination of lateral surfaces indicates that Cr atoms neither have influence on the twin width nor on the rhombohedral-twinning propagation. All these results have been properly explained within the model of Geipel et al.


Sapphire Chromium Concentration Basal Slip Adjacent Plane Zonal Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by the Ministry of Science and Technology (Government of Spain) through the project MAT2003-04199-CO2-02. Our colleague P. Veyssière passed away very recently. After a long time of friendship and collaborations, sadly this work is the last one that P. Veyssière signs with us. His great disposition, good character, and exceptional human and scientific value are remembered.


  1. 1.
    Scott WD, Orr KK (1983) J Am Ceram Soc 66:27CrossRefGoogle Scholar
  2. 2.
    Heuer AH (1966) Philos Mag 13:379CrossRefGoogle Scholar
  3. 3.
    Castaing J, Muñoz A, Domínguez Rodríguez A (2002) Philos Mag A 82:1419Google Scholar
  4. 4.
    Karp FB (1981) Doctoral Thesis, Washington UniversityGoogle Scholar
  5. 5.
    Scott WD (1975) In: Bradt RC, Tressler RE (eds) Deformation of ceramic materials. Plenum, New YorkGoogle Scholar
  6. 6.
    Castaing J, Muñoz A, Gomez Garcia D, Domínguez Rodríguez A (1997) Mater Sci Eng A233:121Google Scholar
  7. 7.
    Pirouz P (1987) Scripta Mater 21:1463CrossRefGoogle Scholar
  8. 8.
    Geipel T, Lagerlöf KPD, Pirouz P, Heuer AH (1994) Acta Metall Mater 42:1367CrossRefGoogle Scholar
  9. 9.
    Lagerlof KPD, Castaing J, Pirouz P, Heuer AH (2002) Philos Mag A 82:2841CrossRefGoogle Scholar
  10. 10.
    Nufer S, Marinopoulos AG, Gemming T, Elässer C, Kurtz W, Köstmeier S, Rühle M (2001) Phys Rev Lett 86:5066CrossRefGoogle Scholar
  11. 11.
    Marinopoulos AG, Elässer C (2000) Acta Metall Mater 48:4375Google Scholar
  12. 12.
    Castillo Rodríguez M, Muñoz A, Castaing J, Veyssière P, Domínguez Rodríguez A (2007) J Eur Ceram Soc 27:3317CrossRefGoogle Scholar
  13. 13.
    Pletka BJ, Mitchell TE, Heuer AH (1977) Phys Status Solidi A 39:301CrossRefGoogle Scholar
  14. 14.
    Fleischer RL (1964) In: Peckner D (ed) The strengthening of metals. Reinhold Publ. Corp, New YorkGoogle Scholar
  15. 15.
    Labusch R (1970) Phys Status Solidi 41:659CrossRefGoogle Scholar
  16. 16.
    Pirouz P, Yang JW (1993) Ultramicroscopy 51:189CrossRefGoogle Scholar
  17. 17.
    Haasen P (1979) In: Navarro FRN (ed) Dislocations in solids. North-Holland Publ. Co, North-HollandGoogle Scholar
  18. 18.
    Heuer AH, Lagerlöf KPD, Castaing J (1998) Philos Mag A 78:747CrossRefGoogle Scholar
  19. 19.
    Savrum E, Scott WD, Harris DC (2001) J Mater Sci 36:2295. doi: 10.1023/A:1017576907831 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Castillo-Rodríguez
    • 1
  • A. Muñoz
    • 2
  • J. Castaing
    • 3
  • P. Veyssière
    • 4
  • A. Domínguez-Rodríguez
    • 2
  1. 1.Departamento Física de la Materia CondensadaUniversidad del País VascoBilbaoSpain
  2. 2.Departamento Física de la Materia CondensadaUniversidad de SevillaSevilleSpain
  3. 3.C2RMF, CNRS UMR 171, Palais du LouvreParisFrance
  4. 4.LEM, CNRS UMR 104, ONERAChatillon CedexFrance

Personalised recommendations