Advertisement

Journal of Materials Science

, Volume 46, Issue 21, pp 6850–6855 | Cite as

Preparation and characterization of conductive carbon nanotube-polyurethane foam composites

  • Kyung Min You
  • Sang Sun Park
  • Choon Soo Lee
  • Ji Mun Kim
  • Gun Pyo Park
  • Woo Nyon Kim
Article

Abstract

Electrical, thermal, and morphological properties of the polyurethane foam (PUF)/multiwall carbon nanotube (MWCNT) composites were investigated with the MWCNT content. Electrical conductivity of the PUF/MWCNT composites increased rapidly from 0 to 0.23 S/cm at 0.1 php MWCNT content, then, the electrical conductivity did not change significantly with the increase of MWCNT content up to 0.5 phr because of the aggregation of the MWCNT when the amount of MWCNT was large (0.5 php). The PUF/MWCNT composite having low MWCNT contents (0.01, 0.05, and 0.1 php) showed lower thermal conductivity than that of the PUF/MWCNT composite having higher content (0.5 php). This is maybe due to that the PUF with the lower MWCNT contents (0.01, 0.05, and 0.1 php) showed smaller cell size than that of the PUF with the higher content of MWCNT (0.5 php). From the results of thermal conductivity and cell size of the PUF/MWCNT composites, it is suggested that reduction in cell size of the composite affects lowering the thermal conductivity of the PUF/MWCNT composites. Also, small amount (0.01, 0.05, and 0.1 php) of MWCNT may contribute to decrease the thermal conductivity of the PUF/MWCNT composites.

Keywords

Thermal Conductivity Polyol Polyurethane Foam Bubble Growth Average Cell Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study is the outcome of a Manpower Development Program for Energy & Resources supported by the Ministry of Knowledge and Economy (MKE).

References

  1. 1.
    Sumfleth J, Buschhorn S, Schulte K (2011) J Mater Sci 46:659. doi: 10.1007/s10853-010-4788-6 CrossRefGoogle Scholar
  2. 2.
    Zhang R, Dowden A, Deng H, Baxendale M, Peijs T (2009) Compos Sci Technol 69:1499CrossRefGoogle Scholar
  3. 3.
    Yun YS, Bak H, Jin HJ (2010) Synth Met 160:561CrossRefGoogle Scholar
  4. 4.
    Kao CC, Young RJ (2010) J Mater Sci 45:1425. doi: 10.1007/s10853-009-3947-0 CrossRefGoogle Scholar
  5. 5.
    Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN (2006) Polymer 47:4434CrossRefGoogle Scholar
  6. 6.
    Jeong N, Han SO, Kim H, Kim HS, You YJ (2011) J Mater Sci 46:2041. doi: 10.1007/s10853-010-5036-9 CrossRefGoogle Scholar
  7. 7.
    Han MS, Lee YK, Lee HS, Yun CH, Kim WN (2009) Chem Eng Sci 64:4649CrossRefGoogle Scholar
  8. 8.
    Li WQ, Zhang HB, Xiong X (2011) J Mater Sci 46:1143. doi: 10.1007/s10853-010-5099-7 CrossRefGoogle Scholar
  9. 9.
    Nayak GC, Rajasekar R, Das CK (2011) J Mater Sci 46:2050. doi: 10.1007/s10853-010-5037-8 CrossRefGoogle Scholar
  10. 10.
    Gubbels F, Jerome R, Vanlathem E, Deltour R, Blacher S, Brouers F (1998) Chem Mater 10:1227CrossRefGoogle Scholar
  11. 11.
    Song B, Lu W-Y, Syn CJ, Chen W (2009) J Mater Sci 44:351. doi: 10.1007/s10853-008-3105-0 CrossRefGoogle Scholar
  12. 12.
    You M, Zhang X, Wang J, Wang X (2009) J Mater Sci 44:3141. doi: 10.1007/s10853-009-3418-7 CrossRefGoogle Scholar
  13. 13.
    Lim H, Kim SH, Kim BK (2008) J Appl Polym Sci 110:49CrossRefGoogle Scholar
  14. 14.
    Kim SH, Kim BK, Lim H (2008) Macromol Res 16:467CrossRefGoogle Scholar
  15. 15.
    Oertel G (1993) Polyurethane handbook. Hanser Publishers, New YorkGoogle Scholar
  16. 16.
    Cotgreave TC, Shortall JB (1977) J Mater Sci 12:708. doi: 10.1007/BF00548161 CrossRefGoogle Scholar
  17. 17.
    Kang MJ, Kim YH, Park GP, Han MS, Kim WN, Park SD (2010) J Mater Sci 45:5412. doi: 10.1007/s10853-010-4594-1 CrossRefGoogle Scholar
  18. 18.
    Schmidt RH, Kinloch IA, Burgess AN, Windle AH (2007) Langmuir 23:5707CrossRefGoogle Scholar
  19. 19.
    Ferrero-Heredia MA, Day J, Ward WJ (1995) J Cell Plast 31:565Google Scholar
  20. 20.
    Hashida T, Ueda T, Nakamoto H, Suzuki M (1998) High Perform Polym 10:81CrossRefGoogle Scholar
  21. 21.
    Seo WJ, Jung HC, Hyun JC, Kim WN, Lee YB, Choe KH, Kim SB (2003) J Appl Polym Sci 90:12CrossRefGoogle Scholar
  22. 22.
    Baser SA, Khakhar DV (1994) Polym Eng Sci 34:642CrossRefGoogle Scholar
  23. 23.
    Kang JW, Kim JM, Kim MS, Kim YH, Kim WN (2009) Macromol Res 17:856CrossRefGoogle Scholar
  24. 24.
    Cao X, Lee LJ, Widya T, Macosko C (2005) Polymer 46:775CrossRefGoogle Scholar
  25. 25.
    Modesti M, Lorenzetti A, Besco S (2007) Polym Eng Sci 47:1351CrossRefGoogle Scholar
  26. 26.
    Frisch KC, Saunders JH (1976) Plastic foams. Dekker, New YorkGoogle Scholar
  27. 27.
    Han MS, Choi SJ, Kim JM, Kim YH, Kim WN, Lee HS, Sung JY (2009) Macromol Res 17:44CrossRefGoogle Scholar
  28. 28.
    Shutov FA (1983) Adv Polym Sci 51:155CrossRefGoogle Scholar
  29. 29.
    Colton JS, Suh NP (1987) Polym Eng Sci 27:485CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kyung Min You
    • 1
  • Sang Sun Park
    • 1
  • Choon Soo Lee
    • 1
  • Ji Mun Kim
    • 2
  • Gun Pyo Park
    • 2
  • Woo Nyon Kim
    • 2
  1. 1.Polymeric Materials Research Team, Hyundai-Kia Motors R&D DivisionHwaseong-siKorea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversityAnam-dongKorea

Personalised recommendations