Skip to main content
Log in

Influence of curing temperature on the evolution of magnesium oxychloride cement

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hardening behaviour and strength of oxychloride cement strongly depend on the formation of Phase 3 and Phase 5 from MgO and magnesium chloride water solution, and the initial composition can be chosen accordingly within the corresponding phase diagram. A certain number of reactions occur before the final formation of P5 or P3 crystals, and several parameters influence the transformations kinetic, such as MgO reactivity and temperature. Several articles deal with the first aspect, while no indications can be found with regard to the curing temperature’s effect on the formation of noble phases. In this article the evolution of magnesium oxychloride cement pastes is analysed at various curing temperatures between 5 and 40 °C. The study is carried out to simulate typical industrial processing conditions and indicate optimal conditions for the production of high chemical and mechanical resistance oxychloride cement. It is shown that at low temperature, Phase 3 is produced in place of Phase 5, and a certain amount of MgO remains non-reacted. The corresponding cement is characterised by lower mechanical strength and higher water solubility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sorel S (1867) C R Acad Sci France 65:102

    Google Scholar 

  2. P de Henau, M Dupas (1976) In Proceedings of the second international symposium on the deterioration of building stone, Athens, p 319

  3. Skoulikidis Th, Papakonstantinou E, Galanos A, Doganis Y (1994) Study for the restoration of the Parthenon, vol 3. Ministry of Culture, Committee for the Preservation of the Acropolis Monuments, Athens

  4. Maravelaki-Kalaitzaki P, Moraitou G (1999) Cem Concr Res 29:1929

    Article  CAS  Google Scholar 

  5. Xia S, Xing P, Gao S (1991) Thermochim Acta 183:349

    Article  CAS  Google Scholar 

  6. de Castellar MD, Lorente JC, Traveria A, Tura JM (1996) Cem Concr Res 26(8):1199

    Article  Google Scholar 

  7. Plekhanova TA, Keriene J, Gailius A, Yakovlev GI (2007) Constr Build Mater 21:1833

    Article  Google Scholar 

  8. Hassan SSM, Awwad NS, Aboterika AHA (2006) J Radioanal Nucl Chem 269(1):135

    Article  CAS  Google Scholar 

  9. Awwad NS, Daifullah AAM (2005) J Radioanal Nucl Chem 264(3):623

    Article  CAS  Google Scholar 

  10. Sorrell CA, Armstrong CR (1976) J Am Ceram Soc 59(1–2):51

    Article  CAS  Google Scholar 

  11. Matkovic B, Young IF (1973) Phys Sci 246:79

    CAS  Google Scholar 

  12. Matkovic B, Popovic S, Rogic V, Zunic T, Young JF (1977) J Am Ceram Soc 60(11–12):504

    Article  CAS  Google Scholar 

  13. Li Z, Chau CK (2007) Cem Concr Res 37:866

    Article  CAS  Google Scholar 

  14. Urwongse L, Sorrell CA (1980) J Am Ceram Soc 63(9–10):501

    Article  CAS  Google Scholar 

  15. Cole WF, Demediuk T (1955) Aust J Chem 8(2):234

    Article  CAS  Google Scholar 

  16. Bilinski H, Matkovic B, Mazuranic C, Zunic TB (1984) J Am Ceram Soc 67(4):266

    Article  CAS  Google Scholar 

  17. Dehua D, Chuanmei Z (1999) Cem Concr Res 29:1365

    Article  CAS  Google Scholar 

  18. Lutterotti L, Ceccato R, Dal Maschio R, Pagani E (1998) Mater Sci Forum 278–281:87

    Article  Google Scholar 

  19. Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H-R (2007) Z Kristallogr Suppl 26:125

    Article  Google Scholar 

  20. Shetty DK, Rosenfield AR, McGuire P, Bansal GK, Duckworth WH (1980) Ceram Bull 59(12):1193

    Google Scholar 

  21. JCPDS – Joint Committee on Powder Diffraction Standards – PDF Powder Diffraction File

  22. ICSD Collection Code – available on Crystallography Open Database (COD). https://doi.org/www.crystallography.net

Download references

Acknowledgements

The authors thank Deroma Spa for their financial support. The authors thank also Dr. Andrea Camporese and Dr. Marco Passerini (Ricert srl, Monte di Malo , VI, Italy) for their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo M. Sglavo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sglavo, V.M., De Genua, F., Conci, A. et al. Influence of curing temperature on the evolution of magnesium oxychloride cement. J Mater Sci 46, 6726–6733 (2011). https://doi.org/10.1007/s10853-011-5628-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5628-z

Keywords

Navigation