Skip to main content
Log in

Enhancement of the thermal conductivity of aluminum oxide–epoxy terminated poly(dimethyl siloxane) with a metal oxide containing polysiloxane

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum oxide containing poly(dimethyl-methylvinyl)siloxane (PMDMS:Al2O3) was synthesized and blended with epoxy-terminated dimethylsiloxane (ETDS) to fabricate a thermally conducting composite. PMDMS:Al2O3 was added to provide interfacial interactions between the Al2O3 and polymer matrix. The PMDMS:Al2O3 containing composites revealed more enhanced thermal conduction properties because of the strengthened interfacial bonding at a fixed filler concentration. The conductivity as a function of the filler concentration was correlated with Agari’s models. Based on the coefficient obtained from Agari’s model, PMDMS:Al2O3 affected the formation of the conducting path in the composite. The results indicated that the presence of PMDMS:Al2O3 would help to establish a conducting path compared to compounds without it. All composites showed a decrease in thermal conductivity with increasing operating temperature. As expected, the PMDMS:Al2O3 containing composite (P-ETDS/Al2O3) showed more enhanced thermal conductivity than those without, regardless of the operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) J Phys Chem C 111:7565

    Article  CAS  Google Scholar 

  2. Lin W, Moon KS, Wong CP (2009) Adv Mater 21:2421

    Article  CAS  Google Scholar 

  3. Mamunya Y, Boundenne A, Lebovka N, Candau Y, Lisunova M (2008) Compos Sci Technol 68:1981

    Article  CAS  Google Scholar 

  4. Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ (2005) Thermochim Acta 430:155

    Article  CAS  Google Scholar 

  5. Xu Y, Luo X, Chung DDL (2002) J Electron Packag 124:188

    Article  CAS  Google Scholar 

  6. Wolff EG, Shneider DA (1998) Int J Heat Mass Transf 41:3469

    Article  CAS  Google Scholar 

  7. Yung KC, Wang J, Yue TM (2008) J Compos Mater 42:2615

    Article  CAS  Google Scholar 

  8. Lee GW, Park M, Kim J, Lee JI, Yoon HG (2006) Compos Part A Appl Sci Manuf 37:727

    Article  CAS  Google Scholar 

  9. Shi Z, Radwan M, Kirihara S, Miyamoto Y, Jin Z (2009) Appl Phys Lett 95:224104

    Article  CAS  Google Scholar 

  10. Li TL, Hsu SLC (2010) J Phys Chem B 114:6825

    Article  CAS  Google Scholar 

  11. Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2009) Adv Funct Mat 19:1857

    Article  CAS  Google Scholar 

  12. Yang F, Zhao X, Xiao P (2010) J Eur Ceram Soc 30:3111

    Article  CAS  Google Scholar 

  13. Lee B, Dai G (2009) J Mater Sci 44:4848. doi:https://doi.org/10.1007/s10853-009-3739-6

    Article  CAS  Google Scholar 

  14. Lee ES, Lee SM, Shanefield DJ, Cannon WR (2008) J Am Ceram Soc 91:1169

    Article  CAS  Google Scholar 

  15. Watari K, Ishizaki K, Tsuchiya F (1993) J Mater Sci 28:3709. doi:https://doi.org/10.1007/BF00353168

    Article  CAS  Google Scholar 

  16. Hirano M, Yamauchi N (1993) J Mater Sci 28:5737. doi:https://doi.org/10.1007/BF00365175

    Article  CAS  Google Scholar 

  17. Zhou W (2011) J Mater Sci 46:3883. doi:https://doi.org/10.1007/s10853-011-5309-y

    Article  CAS  Google Scholar 

  18. Guthy C, Du F, Brand S, Winey KI, Fischer JE (2007) J Heat Transf 129:1096

    Article  CAS  Google Scholar 

  19. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767

    Article  CAS  Google Scholar 

  20. Liu CH, Huang H, Wu Y, Fan SS (2004) Appl Phys Lett 84:4248

    Article  CAS  Google Scholar 

  21. Bryning MB, Milkie DE, Islam MF, Kikkawa JM, Yodh AG (2005) Appl Phys Lett 87:161909

    Article  CAS  Google Scholar 

  22. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Appl Phys Lett 89:133102

    Article  CAS  Google Scholar 

  23. Lee HH, Chou KS, Shih ZW (2005) Int J Adhes Adhes 25:437

    Article  CAS  Google Scholar 

  24. Gwinn JP, Webb RL (2003) Microelectron J 34:215

    Article  CAS  Google Scholar 

  25. Hong J, Lee J, Hong CK, Shim SE (2010) Curr Appl Phys 10:359

    Article  Google Scholar 

  26. Wang Q, Gao W, Xie Z (2003) J Appl Polym Sci 89:2397

    Article  CAS  Google Scholar 

  27. Zhou W, Qi S, Tu C, Zhao H (2007) J Appl Polym Sci 104:2478

    Article  CAS  Google Scholar 

  28. Kim H, Kim J, Kim J (2010) Microelectron Reliab 50:258

    Article  CAS  Google Scholar 

  29. Im H, Kim J (2010) Polym Compos 31:1669

    Article  CAS  Google Scholar 

  30. McGrath JE, Riffle JS, Banthia AK, Yilgor L, Wilkes GL (1983) An overview of the polymerization of cyclosiloxanes, initiation and polymerization. In: ACS Symposium Series No. 212, Chapter 2, Washington

  31. Kang DH, Lee BC (2004) Polymer (Korea) 28:143

    CAS  Google Scholar 

  32. Carson JK, Noureldin M (2009) Int Commun Heat Mass 36:458

    Article  CAS  Google Scholar 

  33. Gustafsson SE, Karawacki E, Khan MN (1979) J Phys D Appl Phys 12:1411

    Article  CAS  Google Scholar 

  34. Barrie JA, Munday K (1983) J Membr Sci 13:175

    Article  CAS  Google Scholar 

  35. Bajaj P, Varshney SK (1981) Polymer 22:372

    Article  CAS  Google Scholar 

  36. Horiuchi H, Irie S, Nose T (1991) Polymer 32:1970

    Article  CAS  Google Scholar 

  37. Hashin Z, Shtrikman S (1962) J Appl Phys 33:3125

    Article  CAS  Google Scholar 

  38. Sushumna I, Gupta RK, Ruckenstein E (1991) J Mater Res 6:1082

    Article  CAS  Google Scholar 

  39. Meredith RE, Tobias CW (1962) Advances in electrochemistry and electrochemical engineering, vol 2. Wiley, New York

    Google Scholar 

  40. Brruggeman DAG (1935) Ann Phys 416:636

    Article  Google Scholar 

  41. Meredith RE, Tobias CW (1961) J Electrochem Soc 108:286

    Article  CAS  Google Scholar 

  42. Ramajo L, Reboredo M, Santiago D, Castro M (2008) J Compos Mater 42:2027

    Article  CAS  Google Scholar 

  43. Agari Y, Uno T (1985) J Appl Polym Sci 30:2225

    Article  CAS  Google Scholar 

  44. Scarisbrick RM (1973) J Phys D Appl Phys 6:2098

    Article  CAS  Google Scholar 

  45. Markov AV (2008) Polym Sci Ser A 5:709

    Google Scholar 

  46. Agari Y, Tanaka M, Nagai S, Uno T (1987) J Appl Polym Sci 34:1429

    Article  CAS  Google Scholar 

  47. Cecen V, Tavman IH, Kok M, Aydogdu Y (2009) Polym Compos 30:1229

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study (Grant No. 000440680110) was supported by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooheon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, H., Kim, J. Enhancement of the thermal conductivity of aluminum oxide–epoxy terminated poly(dimethyl siloxane) with a metal oxide containing polysiloxane. J Mater Sci 46, 6571–6580 (2011). https://doi.org/10.1007/s10853-011-5604-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5604-7

Keywords

Navigation