Skip to main content
Log in

Electrical and tribological properties of a Ni–18%Ru alloy for contact applications

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A study of the microstructure, development of contact resistance during oxidation, and abrasive wear behavior for a Ni–18 at.%Ru alloy is presented in this article. It is shown that the alloy can be solutionized and aged, resulting in a fine lamellar mixture of FCC α-Ni and HCP β-Ru phases. Upon oxidation in air for 400 h, the measured contact resistance of the alloy is two orders of magnitude lower than that of pure Ni after 400-h oxidation. This behavior results from the formation of a low-resistivity rutile RuO2 scale on the β phase lamellae, which gives conducting pathways through the insulating NiO scale that forms on the α phase. After an initial run-in period, the steady-state abrasive wear rate measured for the Ni–Ru alloy is an order of magnitude less than that of pure Ni. Since the micro-cutting and flaking wear mechanisms are the same, the differences in the wear rates are ascribed to the presence of the well-dispersed hard Ru-rich β phase. The combination of a low-resistivity self-healing native oxide scale and good wear properties makes the alloy an excellent candidate for electrical contact applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Holm R (1967) Electric contacts: theory and applications. Springer-Verlag, Berlin

    Book  Google Scholar 

  2. Slade PG (ed) (1999) Electrical contacts: principles and applications. CRC Press, Boca Raton

    Google Scholar 

  3. Braunovic M, Myshkin NK, Konchits VV (2006) Electrical contacts: fundamentals, applications and technology. CRC Press, Boca Raton

    Book  Google Scholar 

  4. Antler M (1985) Wear 106:5–33

    Article  CAS  Google Scholar 

  5. Beloufa A (2010) Tribol Int 43:2110–2119

    Article  CAS  Google Scholar 

  6. Kim K (2010) Wear 269:655–663

    Article  CAS  Google Scholar 

  7. Aindow M, Alpay SP, Liu Y, Mantese JV, Senturk BS (2010) Appl Phys Lett 97:152103

    Article  Google Scholar 

  8. Tsuda N, Nasu K, Fujimori A, Siratori K (2000) Electronic conduction in oxides, 2nd edn. Springer, New York

    Book  Google Scholar 

  9. Keith MG, James RC (1993) Phys Rev B 47:1732

    Google Scholar 

  10. Mattheiss LF (1976) Phys Rev B 13:2433

    Article  CAS  Google Scholar 

  11. Graebner JE, Greiner ES, Ryden WD (1976) Phys Rev B 13:2426

    Article  CAS  Google Scholar 

  12. Boshta M, Gad SA, El-Soud AMA, Mostafaa MZ (2009) J Ovonic Res 5:1–8

    CAS  Google Scholar 

  13. Jang WL, Lu YM, Hwang WS, Chen WC (2010) J Eur Ceram Soc 30:503–508

    Article  CAS  Google Scholar 

  14. Hakim A, Hossain J, Khan KA (2009) Renew Energ 34:2625–2629

    Article  CAS  Google Scholar 

  15. ASTM Standard B 667-97, Standard Practice for Construction and Use of a Probe for Measuring Electrical Contact Resistance, 1997

  16. Tamai T (1989) Electron Commun Jpn Part 2. Electron 72:87–93

    Google Scholar 

  17. Zhu YF, Mimira K, Lim J, Isshiki M, Jiang Q (2006) Met Mater Trans A 37A:1231–1237

    CAS  Google Scholar 

  18. Veeka Kumari S, Natarajan M, Vaidyan VK (1992) J Mater Sci Lett 11:761–762

    Article  Google Scholar 

  19. Chang C, Wang C, Jin Y (2010) Wear 29:167–173

    Article  Google Scholar 

  20. Suh NP (1973) Wear 25:111–124

    Article  CAS  Google Scholar 

  21. Suh NP (1977) Wear 44:1–15

    Article  Google Scholar 

  22. Gui MC, Kang SB, Lee JM (2000) J Mater Sci 35:4749–4762

    Article  CAS  Google Scholar 

  23. Gialanella S, Ischia G, Straffelini G (2008) J Mater Sci 43:1701–1710

    Article  CAS  Google Scholar 

  24. Al-Qutub AM, Allam IM, Samad MAA (2008) J Mater Sci 43:5797–5803

    Article  CAS  Google Scholar 

  25. Kumari UR, Rao PP (2009) J Mater Sci 44:1082–1093

    Article  CAS  Google Scholar 

  26. Zhao YT, Wang SQ, Yang ZR, Wei MX (2010) J Mater Sci 45:227–232

    Article  CAS  Google Scholar 

  27. Savaskan T, Bican O, Alemdag Y (2009) J Mater Sci 44:1969–1976

    Article  CAS  Google Scholar 

  28. Srivastava VC, Rudrakshi GB, Uhlenwinkel V, Ojha SN (2009) J Mater Sci 44:2288–2299

    Article  CAS  Google Scholar 

  29. Yan SQ, Xie JP, Liu ZX, Li JW, Wang WY, Wang AQ (2009) J Mater Sci 44:4169–4173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support extended by the U. S. Army Research Office through Grant No. W-911-NF0710388.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Alpay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Senturk, B.S., Mantese, J.V. et al. Electrical and tribological properties of a Ni–18%Ru alloy for contact applications. J Mater Sci 46, 6563–6570 (2011). https://doi.org/10.1007/s10853-011-5603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5603-8

Keywords

Navigation