Skip to main content
Log in

Effect of organoclay with various organic modifiers on the morphological, mechanical, and gas barrier properties of thermoplastic polyurethane/organoclay nanocomposites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoplastic polyurethane (TPU)/organoclay nanocomposites are prepared through a melt extrusion process. The TPU is combined with four differently modified organoclays, namely, I.28E, I.30P, I.34TCN, and I.44P. Wide-angle X-ray diffraction and transmission electron microscopy results show that the addition of I.34TCN and I.30P to TPU/organoclay nanocomposites results in the nearly exfoliated structures of the nanocomposites. Addition of I.28E leads to partially intercalated nanocomposites, whereas I.44P cannot disperse effectively in the nanocomposites. Organoclay can enhance the mechanical and gas barrier properties of TPU. The enhancement follows the order TPU/I.34TCN ≥ TPU/I.30P > TPU/I.28E > TPU/I.44P, which is consistent with the degree of dispersion and exfoliation of silicate layers. In addition, Fourier transform infrared absorption spectra show that more hydrogen bonding sites are introduced between the clay modifiers and TPU chains in the TPU/I.34TCN and TPU/I.30P nanocomposites; this has a positive impact on the dispersion of the organoclay and, consequently, the mechanical and gas barrier properties of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Macromolecules 30:6333

    Article  CAS  Google Scholar 

  2. Usuki A, Kojima Y, Kawasumi M et al (1993) J Mater Res 8:1179

    Article  CAS  Google Scholar 

  3. Zhong Y, Zhu ZY, Wang SQ (2005) Polymer 46:3006. doi:https://doi.org/10.1016/j.polymer.2005.02.014

    Article  CAS  Google Scholar 

  4. Chang JH, An YU, Sur GS (2003) J Polym Sci B Polym Phys 41:94. doi:https://doi.org/10.1002/polb.10349

    Article  CAS  Google Scholar 

  5. Jeong HM, Kim BC, Kim EH (2005) J Mater Sci 40:3783. doi:https://doi.org/10.1007/s10853-005-3719-4

    Article  CAS  Google Scholar 

  6. Zhang YD, Liu QF, Zhang QA, Lu YP (2010) Appl Clay Sci 50:255. doi:https://doi.org/10.1016/j.clay.2010.08.006

    Article  CAS  Google Scholar 

  7. Oral A, Tasdelen MA, Demirel AL, Yagci Y (2009) Polymer 50:3905. doi:https://doi.org/10.1016/j.polymer.2009.06.020

    Article  CAS  Google Scholar 

  8. Ramazani SAA, Tavakolzadeh F, Baniasadi H (2010) J Appl Polym Sci 115:308. doi:https://doi.org/10.1002/app.31102

    Article  Google Scholar 

  9. Ren CY, Jiang ZY, Du XH, Men YF, Tang T (2009) J Phys Chem B 113:14118. doi:https://doi.org/10.1021/jp9063164

    Article  CAS  Google Scholar 

  10. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539. doi:https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  11. Zha WB, Han CD, Han SH et al (2009) Polymer 50:2411. doi:https://doi.org/10.1016/j.polymer.2009.03.018

    Article  CAS  Google Scholar 

  12. Yang M, Wang P, Huang CY, Ku MS, Liu HJ, Gogos C (2010) Int J Pharm 395:53. doi:https://doi.org/10.1016/j.ijpharm.2010.04.033

    Article  CAS  Google Scholar 

  13. Simons R, Qiao GG, Powell CE, Bateman SA (2010) Langmuir 26:9023. doi:https://doi.org/10.1021/la904827d

    Article  CAS  Google Scholar 

  14. Tian Y, Yu H, Wu SS, Ji GD (2004) J Mater Sci 39:4301. doi:https://doi.org/10.1023/B:JMSC.0000033412.92494.ee

    Article  CAS  Google Scholar 

  15. Lakshminarayanan S, Lin B, Gelves GA, Sundararaj U (2009) J Appl Polym Sci 112:3597. doi:https://doi.org/10.1002/app.29679

    Article  CAS  Google Scholar 

  16. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Chem Mater 8:1728

    Article  CAS  Google Scholar 

  17. Giannelis EP (1996) Adv Mater 8:29

    Article  CAS  Google Scholar 

  18. Wang Z, Pinnavaia TJ (1998) Chem Mater 10:3769

    Article  CAS  Google Scholar 

  19. Tien YI, Wei KH (2001) Macromolecules 34:9045. doi:https://doi.org/10.1021/ma010551p

    Article  CAS  Google Scholar 

  20. Cai YB, Hu Y, Song L et al (2007) J Mater Sci 42:5785. doi:https://doi.org/10.1007/s10853-006-0634-2

    Article  CAS  Google Scholar 

  21. Pegoretti A, Dorigato A, Brugnara M, Penati A (2008) Eur Polym J 44:1662. doi:https://doi.org/10.1016/j.eurpolymj.2008.04.011

    Article  CAS  Google Scholar 

  22. Dan CH, Kim YD, Lee MH, Min BH, Kim JH (2008) J Appl Polym Sci 108:2128. doi:https://doi.org/10.1002/app.27879

    Article  CAS  Google Scholar 

  23. Dan CH, Lee MH, Kim YD, Min BH, Kim JH (2006) Polymer 47:6718. doi:https://doi.org/10.1016/j.polymer.2006.07.052

    Article  CAS  Google Scholar 

  24. Cipriano BH, Kota AK, Gershon AL et al (2008) Polymer 49:4846. doi:https://doi.org/10.1016/j.polymer.2008.08.057

    Article  CAS  Google Scholar 

  25. Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS (2007) Polymer 48:966. doi:https://doi.org/10.1016/j.polymer.2006.12.044

    Article  CAS  Google Scholar 

  26. Lee MH, Dan CH, Kim JH et al (2006) Polymer 47:4359. doi:https://doi.org/10.1016/j.polymer.2006.04.003

    Article  CAS  Google Scholar 

  27. Jia QM, Zheng M, Zhu YC, Li JB, Xu CZ (2007) Eur Polym J 43:35. doi:https://doi.org/10.1016/j.eurpolymj.2006.10.016

    Article  CAS  Google Scholar 

  28. Balazs AC, Singh C, Zhulina E (1998) Macromolecules 31:8370

    Article  CAS  Google Scholar 

  29. Lyatskaya Y, Balazs AC (1998) Macromolecules 31:6676

    Article  CAS  Google Scholar 

  30. Worzakowska M (2009) J Mater Sci 44:4069. doi:https://doi.org/10.1007/s10853-009-3587-4

    Article  CAS  Google Scholar 

  31. Meng XY, Wang Z, Zhao ZF, Du XH, WG Bi, Tang T (2007) Polymer 48:2508. doi:https://doi.org/10.1016/j.polymer.2007.03.009

    Article  CAS  Google Scholar 

  32. Nielsen LE (1967) J Macromol Sci Chem A1:929

    Article  Google Scholar 

  33. Lan T, Kaviratna PD, Pinnavaia TJ (1994) Chem Mater 6:573

    Article  CAS  Google Scholar 

  34. Chen BQ, Evans JRG (2006) Macromolecules 39:747. doi:https://doi.org/10.1021/ma052154a

    Article  CAS  Google Scholar 

  35. Chang JH, An YU, Cho DH, Giannelis EP (2003) Polymer 44:3715. doi:https://doi.org/10.1016/s0032-3861(03)00276-3

    Article  CAS  Google Scholar 

  36. Osman MA, Mittal V, Morbidelli M, Suter UW (2003) Macromolecules 36:9851. doi:https://doi.org/10.1021/ma035077x

    Article  CAS  Google Scholar 

  37. Pattanayak A, Jana SC (2005) Polymer 46:5183. doi:https://doi.org/10.1016/j.polymer.2005.04.035

    Article  CAS  Google Scholar 

  38. Pattanayak A, Jana SC (2005) Polymer 46:3275. doi:https://doi.org/10.1016/j.polymer.2005.02.081

    Article  CAS  Google Scholar 

  39. Kim W, Chung DW, Kim JH (2008) J Appl Polym Sci 110:3209. doi:https://doi.org/10.1002/app.28929

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, D., Tan, J., Liu, X. et al. Effect of organoclay with various organic modifiers on the morphological, mechanical, and gas barrier properties of thermoplastic polyurethane/organoclay nanocomposites. J Mater Sci 46, 6508–6517 (2011). https://doi.org/10.1007/s10853-011-5597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5597-2

Keywords

Navigation