Skip to main content
Log in

Strength variability of single flax fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Due to the typical large variability in the measured mechanical properties of flax fibres, they are often employed only in low grade composite applications. The present study aims to investigate the reasons for the variability in tensile properties of flax fibres. It is found that an inaccuracy in the determination of the cross-sectional area of the fibres is one major reason for the variability in properties. By applying a typical circular fibre area assumption, a considerable error is introduced into the calculated mechanical properties. Experimental data, together with a simple analytical model, are presented to show that the error is increased when the aspect ratio of the fibre cross-sectional shape is increased. A variability in properties due to the flax fibres themselves is found to originate from the distribution of defects along the fibres. Two distinctive types of stress–strain behaviours (linear and nonlinear) of the fibres are found to be correlated with the amount of defects. The linear stress–strain curves tend to show a higher tensile strength, a higher Young’s modulus, and a lower strain to failure than the nonlinear curves. Finally, the fibres are found to fracture by a complex microscale failure mechanism. Large fracture zones are governed by both surface and internal defects; and these cause cracks to propagate in the transverse and longitudinal directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Meijer WJM, Vertregt N, Rutgers B, Van de Waart M (1995) Ind Crops Prod 4:273

    Article  CAS  Google Scholar 

  2. Bos HL, Van den Oever MJA, Peters OCJJ (2002) J Mater Sci 37:1683. doi:10.1023/A:1014925621252

    Article  CAS  Google Scholar 

  3. Joffe R, Andersons J, Wallstrom L (2003) Composites A 34:603

    Article  Google Scholar 

  4. Bledzki K, Gassan SJ (1999) Prog Polym Sci 24:221

    Article  CAS  Google Scholar 

  5. Thomason JL, Carruthers J, Johnson KG (2011) Compos Sci Technol 71:1008

    Article  CAS  Google Scholar 

  6. Virk AS (2010) PhD thesis, University of Plymouth, United Kingdom

  7. Baley C (2002) Composites A 33:939

    Article  Google Scholar 

  8. Davies GC, Bruce DM (1998) Textile Res J 68:623

    Article  CAS  Google Scholar 

  9. Charlet K, Baley C, Morvan C (2007) Composites A 38:1912

    Article  Google Scholar 

  10. Virk AS, Hall W, Summerscales J (2010) Compos Sci Technol 50:995

    Article  Google Scholar 

  11. Cierpucha W, Kozlowski R, Mankowski R, Wasko J, Mankowski T (2004) Fibres Text East Eur 47:13

    Google Scholar 

  12. Harwood R, Nusenbaum V, Harwood J (2008) International Conference on Flax and Other Bast Plants Saskaaton Canada, p 118

  13. Reme PA, Johnsen PO, Helle T (2002) J Pulp Pap Sci 28:122

    CAS  Google Scholar 

  14. Chinga-Carrasco G, Lenes M, Johnsen PO, Hult EL (2009) Micron 40:761

    Article  CAS  Google Scholar 

  15. Terasaki Y, Noda J, Koichi G (2009) Adv Mat Res 79:235

    Article  Google Scholar 

  16. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Compos A 38:461

    Article  Google Scholar 

  17. Andersons J, Sparnins E, Joffe R, Wallstrom L (2005) Compos Sci Technol 65:693

    Article  CAS  Google Scholar 

  18. Mehmood S (2009) Unpublished results: Risø National Laboratory for Sustainable Energy. Technical University of Denmark, Denmark

    Google Scholar 

  19. Charlet K, Eve S, Jernot JP, Gomina M, Bread J (2009) Procedia Eng 1:233

    Article  Google Scholar 

  20. Kölln K, Grotkopp I, Burghammer M, Roth SV, Funari SS, Dommach M, Muller M (2005) J Synchron Rad 12:739

    Article  Google Scholar 

  21. Wang HH, Drummond JG, Reath SM, Hunt K, Watson PA (2001) Wood Sci Technol 34:493

    Article  CAS  Google Scholar 

  22. Hill C, Hughes M (2010) J Biobased Mater Bioenergy 4:148

    Article  CAS  Google Scholar 

  23. Thygesen LG, Eder M, Burgert I (2007) J Mater Sci 42:558. doi:10.1007/s10853-006-1113-5

    Article  CAS  Google Scholar 

  24. Zafeiropoulos NE, Dijon GG, Baillie CA (2007) Composites A 38:621

    Article  Google Scholar 

  25. Baley C (2004) J Mater Sci 39:331. doi:10.1023/B:JMSC.0000007768.63055.ae

    Article  CAS  Google Scholar 

  26. Bos HL, Donald AM (1999) J Mater Sci 34:3029. doi:10.1023/A:1004650126890

    Article  CAS  Google Scholar 

  27. Sparnins E, Andersons J (2009) J Mater Sci 44:5697. doi:10.1007/s10853-009-3785-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Stergios Goutianos and Hans Lilholt for helpful advices and Shahid Mehmood for technical assistance, and for valuable input on fibre defects. The research has been partly funded by the European Community’s Seventh Framework Programme under grant agreement no 214467 (NATEX), and grant no 274-07-0300 (WoodFibre3D) by the Danish Agency for Science, Technology and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Aslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslan, M., Chinga-Carrasco, G., Sørensen, B.F. et al. Strength variability of single flax fibres. J Mater Sci 46, 6344–6354 (2011). https://doi.org/10.1007/s10853-011-5581-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5581-x

Keywords

Navigation