Journal of Materials Science

, Volume 46, Issue 22, pp 7082–7089 | Cite as

Carbon-coated nano-sized LiFe1−x Mn x PO4 solid solutions (0 ≤ x ≤ 1) obtained from phosphate–formate precursors

  • M. Yoncheva
  • V. Koleva
  • M. Mladenov
  • M. Sendova-Vassileva
  • M. Nikolaeva-Dimitrova
  • R. Stoyanova
  • E. Zhecheva
Size Dependent Effects


LiFe1−x Mn x PO4 solid solutions in the whole concentration range (0 ≤ x ≤ 1) are obtained at 500 °C by a phosphate–formate precursor method. The method is based on the formation of homogeneous lithium–iron–manganese phosphate–formate precursors by freeze-drying of aqueous solutions containing Li(I), Fe(II), Mn(II), phosphate, and formate ions. Thermal treatment of the phosphate–formate precursors at temperatures at 500 °C yields nano-sized LiFe1−x Mn x PO4 coated with carbon. The structure and the morphology of the LiFe1−x Mn x PO4 compositions are studied by XRD, IR spectroscopy, and SEM analysis. The in situ formed carbon is analyzed by Raman spectroscopy. The electrochemical performance of LiFe1−x Mn x PO4 is tested in model lithium cells using a galvanostatic mode. All LiFe1−x Mn x PO4 compositions are characterized with an ordered olivine-type structure with a homogeneous Fe2+ and Mn2+ distribution in the 4c olivine sites. The morphology of LiFe1−x Mn x PO4 consists of plate-like aggregates which are covered by in situ formed carbon. Inside the aggregates nano-sized isometric particles with narrow particles size distribution (between 60 and 100 nm) are visible. The structure of the deposited carbon presents a considerable disordered graphitic phase and does not depend on the Fe-to-Mn ratio. The solid solutions LiFe1−x Mn x PO4 deliver a good reversible capacity due to the Fe2+/Fe3+ and Mn2+/Mn3+ redox-couples at 3.5 and 4.1 V, respectively.


Olivine LiFePO4 Narrow Particle Size Distribution Voltage Profile Precursor Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors are grateful to the financial support from the National Science Fund of Bulgaria (Ch1701/2007). Partial financial support by the National Centre for New Materials UNION (Contract No DCVP-02/2/2009) is also acknowledged. We are grateful of TIMCAL Company for providing carbon additives. The Raman equipment is used in the framework of project Integrated Research Centres at the Universities No DO02-167/2008.


  1. 1.
    Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:1059CrossRefGoogle Scholar
  2. 2.
    Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Electrochem Commun 12:427CrossRefGoogle Scholar
  3. 3.
    Chen G, Richardson TJ (2010) J Power Sources 195:1221CrossRefGoogle Scholar
  4. 4.
    Yamada A, Chung S-C (2001) J Electrochem Soc 148:A960CrossRefGoogle Scholar
  5. 5.
    Nakamura T, Sakumoto K, Okamoto M, Seki S, Kobayashi Y, Takeuchi T, Tabuchi M, Yamada Y (2007) J Power Sour 174:435CrossRefGoogle Scholar
  6. 6.
    Molenda J, Ojczyk W, Marzec J (2007) J Power Sour 174:689CrossRefGoogle Scholar
  7. 7.
    Kopec M, Yamada A, Kobayashi G, Nishimura S, Kanno R, Mauger A, Gendron F, Julien CM (2009) J Power Sour 189:1154CrossRefGoogle Scholar
  8. 8.
    Bramnik NN, Bramnik KG, Nikolowski K, Hinterstein M, Baehtz C, Ehrenberg H (2005) Electrochem Solid State Lett 8:A379CrossRefGoogle Scholar
  9. 9.
    Bini M, Mozzati MC, Galinetto P, Capsoni D, Ferrari S, Grandi MS, Massarotti V (2009) J Solid State Chem 182:1972CrossRefGoogle Scholar
  10. 10.
    Koleva V, Zhecheva E, Stoyanova R (2009) J Alloys Compd 476:950CrossRefGoogle Scholar
  11. 11.
    Koleva V, Stoyanova R, Zhecheva E (2009) Mater Chem Phys 121:370CrossRefGoogle Scholar
  12. 12.
    Zhecheva E, Mladenov M, Zlatilova P, Koleva V, Stoyanova R (2010) J Phys Chem Solids 71:848CrossRefGoogle Scholar
  13. 13.
    Koleva V, Stoyanova R, Zhecheva E (2010) Eur J Inorg Chem 127Google Scholar
  14. 14.
    Koleva V, Zhecheva E, Stoyanova R (2010) Eur J Inorg Chem 4091Google Scholar
  15. 15.
    Paques-Ledent MT, Tarte P (1972) Spectrochim Acta 29A:673Google Scholar
  16. 16.
    Burba C, Frech R (2006) Spectrochim Acta 65A:44Google Scholar
  17. 17.
    Ait Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Manger A, Julien CM (2006) Spectrochim Acta 65A:1007Google Scholar
  18. 18.
    Tarte P, Rulmont A, Liégeois-Duyckaerts M, Cahay R, Winand JM (1991) Solid State Ionics 42:177CrossRefGoogle Scholar
  19. 19.
    Burba C, Frech R (2007) J Power Sour 172:870CrossRefGoogle Scholar
  20. 20.
    Meisel T, Halmos Z, Seybold K, Pungor E (1975) J Thermal Anal Calorim 7:73CrossRefGoogle Scholar
  21. 21.
    Langbein H, Christen S, Bonsdorf G (1999) Thermochim Acta 327:173CrossRefGoogle Scholar
  22. 22.
    Kenfack F, Langbein H (2005) Thermochim Acta 426:61CrossRefGoogle Scholar
  23. 23.
    Liu Y, Pan C, Wang J (2004) J Mater Sci 39:1091. doi: 10.1023/B:JMSC.0000012952.20840.09 CrossRefGoogle Scholar
  24. 24.
    Tuinstra F, Koenig JL (1970) J Chem Phys 53:1126CrossRefGoogle Scholar
  25. 25.
    Robertson J (2002) J Non Cryst Solids 299–302:798CrossRefGoogle Scholar
  26. 26.
    Ferrari AC, Robertson J (2001) Phys Rev B64:075414Google Scholar
  27. 27.
    Ferrari AC, Robertson J (2001) Phys Rev B61:14095Google Scholar
  28. 28.
    Palomares V, Goni A, Gil de Muro I, Meatza I, Bengoechea M, Cantero I, Rojo T (2010) J Power Sour 195:7661CrossRefGoogle Scholar
  29. 29.
    Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Electrochem Solid State Lett 6:A207CrossRefGoogle Scholar
  30. 30.
    Maccario M, Croguennec L, Desbat B, Couzi M, Le Cras F, Servant L (2008) J Electrochem Soc 155:A879CrossRefGoogle Scholar
  31. 31.
    Ait Salah A, Mauger A, Zaghib K, Goudenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) J Electrochem Soc 153:A1692CrossRefGoogle Scholar
  32. 32.
    Doeff MM, Wilcox JD, Yu R, Aumentado A, Marcinek M, Kostecki R (2008) J Solid State Electrochem 12:995CrossRefGoogle Scholar
  33. 33.
    Van der Ven A, Wagemaker M (2009) Electrochem Commun 11:881CrossRefGoogle Scholar
  34. 34.
    Yamada A, Hosoya M, Chung S-C, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) J Power Sour 119–121:232CrossRefGoogle Scholar
  35. 35.
    Yamada A, Takei Y, Koizumi H, Sonoyama N, Kanno R, Itoh K, Yonemura M, Kamiyama T (2006) Chem Mater 18:804CrossRefGoogle Scholar
  36. 36.
    Nedoseykina T, Kim MG, Park S-A, Kim H-S, Kim S-B, Cho J, Lee Y (2010) Electrochim Acta 55:8876CrossRefGoogle Scholar
  37. 37.
    Fang H, Pan Z, Li L, Yang Y, Yan G, Li G, Wei S (2008) Electrochem Commun 10:1071CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. Yoncheva
    • 1
  • V. Koleva
    • 1
  • M. Mladenov
    • 2
  • M. Sendova-Vassileva
    • 3
  • M. Nikolaeva-Dimitrova
    • 3
  • R. Stoyanova
    • 1
  • E. Zhecheva
    • 1
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Electrochemistry and Energy SourcesBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations