Skip to main content
Log in

Synthesis and applications of fluorescent-magnetic-bifunctional dansylated Fe3O4@SiO2 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bifunctional magnetic-luminescent dansylated Fe3O4@SiO2 (Fe3O4@SiO2-DNS) nanoparticles were fabricated by the nucleophilic substitution of dansyl chloride with primary amines of aminosilane-modified Fe3O4@SiO2 core–shell nanostructures. The morphology and properties of the resultant Fe3O4@SiO2-DNS nanoparticles were investigated by transmission electron microscopy, FT–IR spectra, UV–vis spectra, photoluminescence spectra, and vibrating sample magnetometry. The Fe3O4@SiO2-DNS nanocomposites exhibit superparamagnetic behavior at room temperature, and can emit strong green light under the excitation of UV light. They show very low cytotoxicity against HeLa cells and negligible hemolysis activity. The T 2 relaxivity of Fe3O4@SiO2-DNS in water was determined to be 114.6 Fe mM−1 s−1. Magnetic resonance (MR) imaging analysis coupled with confocal microscopy shows that Fe3O4@SiO2-DNS can be uptaken by the cancer cells effectively. All these positive attributes make Fe3O4@SiO2-DNS a promising candidate for both MR and fluorescent imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tran N, Webster TJ (2010) J Mater Chem 20:8760

    Article  CAS  Google Scholar 

  2. Sandhu A, Handa H, Abe M (2010) Nanotechnology 21:442001

    Article  Google Scholar 

  3. Hao R, Xing RJ, Xu ZC, Hou YL, Gao S, Sun SH (2010) Adv Mater 22:2729

    Article  CAS  Google Scholar 

  4. Veiseh O, Gunn JW, Zhang MQ (2010) Adv Drug Deliv Rev 62:284

    Article  CAS  Google Scholar 

  5. Lu Y, Yin YD, Mayers BT, Xia YN (2002) Nano Lett 2:183

    Article  CAS  Google Scholar 

  6. Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Anal Chem 76:1316

    Article  CAS  Google Scholar 

  7. Barnakov YA, Yu MH, Rosenzweig Z (2005) Langmuir 21:7524

    Article  CAS  Google Scholar 

  8. He R, You XG, Shao J, Gao F, Pan BF, Cui DX (2007) Nanotechnology 18:315601

    Article  Google Scholar 

  9. Lai W, Garino J, Ducheyne P (2002) Biomaterials 23:213

    Article  CAS  Google Scholar 

  10. Stjerndahl M, Andersson M, Hall HE, Pajerowski DM, Meisel MW, Duran RS (2008) Langmuir 24:3532

    Article  CAS  Google Scholar 

  11. Stober W, Fink A, Bohn EW (1968) J Colloid Interface Sci 26:62

    Article  Google Scholar 

  12. Ma DL, Veres T, Clim L, Normandin F, Guan JW, Kingston D, Simard B (2007) J Phys Chem C 111:1999

    Article  CAS  Google Scholar 

  13. Wang L, Tan WH (2006) Nano Lett 6:84

    Article  CAS  Google Scholar 

  14. Zhao XJ, Bagwe RP, Tan WH (2004) Adv Mater 16:173

    Article  CAS  Google Scholar 

  15. Santra S, Zhang P, Wang KM, Tapec R, Tan WH (2001) Anal Chem 73:4988

    Article  CAS  Google Scholar 

  16. Chen F, Bu WB, Chen Y, Fan YC, He QJ, Zhu M, Liu XH, Zhou LP, Zhang SJ, Peng WJ, Shi JL (2009) Chem Asian J 4:1809

    Article  CAS  Google Scholar 

  17. Yoon TJ, Yu KN, Kim E, Kim JS, Kim BG, Yun SH, Sohn BH, Cho MH, Lee JK, Park SB (2006) Small 2:209

    Article  CAS  Google Scholar 

  18. Yang H, Zhuang YM, Hu H, Du XX, Zhang CX, Shi XY, Wu HX, Yang SP (2010) Adv Funct Mater 20:1733

    Article  CAS  Google Scholar 

  19. Zhang BB, Chen BD, Wang YL, Guo FF, Li ZQ, Shi DL (2011) J Colloid Interface Sci 353:426

    Article  CAS  Google Scholar 

  20. Wang XX, Zhong JY, Liu Y, Wen AX, Shan Z, Yang WS (2010) Acta Chim Sinica 68:2063

    CAS  Google Scholar 

  21. Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM, Chen YC (2007) Nano Lett 7:149

    Article  CAS  Google Scholar 

  22. Schartl W (2010) Nanoscale 2:829

    Article  CAS  Google Scholar 

  23. Cruces-Blanco C, Carretero AS, Boyle EM, Gutierrez AF (1999) Talanta 50:1099

    Article  CAS  Google Scholar 

  24. Tong AJ, Wu YG, Li LD (1996) Talanta 43:1429

    Article  CAS  Google Scholar 

  25. Qi L, Yang GL (2009) Electrophoresis 30:2882

    Article  CAS  Google Scholar 

  26. Sanchez FG, Blanco CC (1991) Analyst 116:851

    Article  Google Scholar 

  27. Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) J Phys Chem B 109:3879

    Article  CAS  Google Scholar 

  28. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891

    Article  CAS  Google Scholar 

  29. Morel AL, Nikitenko SI, Gionnet K, Alain Wattiaux, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) ACS Nano 2:847

    Article  CAS  Google Scholar 

  30. Zhou JF, Meng LJ, Lu QH, Fu JW, Huang XB (2009) Chem Commun 42:6370

    Article  Google Scholar 

  31. Jana NR, Earhart C, Ying JY (2007) Chem Mater 19:5074

    Article  CAS  Google Scholar 

  32. Abboud M, Turner M, Duguet E, Fontanille M (1997) J Mater Chem 7:1527

    Article  CAS  Google Scholar 

  33. Albala R, Olmos D, Aznar AJ, Baselga J, Gonzalez-Benito J (2004) J Colloid Interface Sci 277:71

    Article  CAS  Google Scholar 

  34. Wang LY, Bao J, Wang L, Zhang F, Li YD (2006) Chem Eur J 12:6341

    Article  CAS  Google Scholar 

  35. Guo SJ, Li D, Zhang LM, Li J, Wang EK (2009) Biomaterials 30:1881

    Article  CAS  Google Scholar 

  36. Cao HN, He J, Deng L, Gao XQ (2009) Appl Surf Sci 255:7974

    Article  CAS  Google Scholar 

  37. Griesser T, Hofler T, Temmel S, Kern W, Trimmel G (2007) Chem Mater 19:3011

    Article  CAS  Google Scholar 

  38. Vogtle F, Gestermann S, Kauffmann C, Ceroni P, Vicinelli V, De Cola L, Balzani V (1999) J Am Chem Soc 121:12161

    Article  Google Scholar 

  39. Li ZY, Xia JL, Liang JH, Yuan JJ, Jin GJ, Yin J, Yu GA, Liu SH (2011) Dyes Pigments 90:290

    Article  CAS  Google Scholar 

  40. Wang Y, Ng YW, Chen Y, Shuter B, Yi J, Ding J, Wang SC, Feng SS (2008) Adv Funct Mater 18:308

    Article  CAS  Google Scholar 

  41. Salgueirino-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzan LM, Farle M (2006) Adv Funct Mater 16:509

    Article  CAS  Google Scholar 

  42. Slowing II, Wu CW, Vivero-Escoto JL, Lin VSY (2009) Small 5:57

    Article  CAS  Google Scholar 

  43. Yang H, Zhang JJ, Tian QW, Hu H, Fang Y, Wu HX, Yang SP (2010) J Magn Magn Mater 322:973

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Grant no. 50972092, 20971086), the Science and Technology Commission of Shanghai Municipality (065212050, S30406), Special Foundation of China Postdoctoral Science Foundation (201003282), the Shanghai Key Laboratory of the Rare Earth Functional Materials (07dz22303), the Shanghai Municipal Education Commission (10ZZ84), Leading Academic Discipline Project of Shanghai Normal University (DZL806), and the Key Subject of Education Ministry of China (210075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huixia Wu or Shiping Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, G., Wu, H., Zheng, H. et al. Synthesis and applications of fluorescent-magnetic-bifunctional dansylated Fe3O4@SiO2 nanoparticles. J Mater Sci 46, 5959–5968 (2011). https://doi.org/10.1007/s10853-011-5551-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5551-3

Keywords

Navigation