Advertisement

Journal of Materials Science

, Volume 46, Issue 18, pp 5959–5968 | Cite as

Synthesis and applications of fluorescent-magnetic-bifunctional dansylated Fe3O4@SiO2 nanoparticles

  • Gang Liu
  • Huixia Wu
  • Haoran Zheng
  • Lihui Tang
  • He Hu
  • Hong Yang
  • Shiping Yang
Article

Abstract

Bifunctional magnetic-luminescent dansylated Fe3O4@SiO2 (Fe3O4@SiO2-DNS) nanoparticles were fabricated by the nucleophilic substitution of dansyl chloride with primary amines of aminosilane-modified Fe3O4@SiO2 core–shell nanostructures. The morphology and properties of the resultant Fe3O4@SiO2-DNS nanoparticles were investigated by transmission electron microscopy, FT–IR spectra, UV–vis spectra, photoluminescence spectra, and vibrating sample magnetometry. The Fe3O4@SiO2-DNS nanocomposites exhibit superparamagnetic behavior at room temperature, and can emit strong green light under the excitation of UV light. They show very low cytotoxicity against HeLa cells and negligible hemolysis activity. The T 2 relaxivity of Fe3O4@SiO2-DNS in water was determined to be 114.6 Fe mM−1 s−1. Magnetic resonance (MR) imaging analysis coupled with confocal microscopy shows that Fe3O4@SiO2-DNS can be uptaken by the cancer cells effectively. All these positive attributes make Fe3O4@SiO2-DNS a promising candidate for both MR and fluorescent imaging applications.

Keywords

Fe3O4 Nanoparticles Hemolytic Activity Dansyl HeLa Cell Line Hemolysis Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study is supported by the National Natural Science Foundation of China (Grant no. 50972092, 20971086), the Science and Technology Commission of Shanghai Municipality (065212050, S30406), Special Foundation of China Postdoctoral Science Foundation (201003282), the Shanghai Key Laboratory of the Rare Earth Functional Materials (07dz22303), the Shanghai Municipal Education Commission (10ZZ84), Leading Academic Discipline Project of Shanghai Normal University (DZL806), and the Key Subject of Education Ministry of China (210075).

References

  1. 1.
    Tran N, Webster TJ (2010) J Mater Chem 20:8760CrossRefGoogle Scholar
  2. 2.
    Sandhu A, Handa H, Abe M (2010) Nanotechnology 21:442001CrossRefGoogle Scholar
  3. 3.
    Hao R, Xing RJ, Xu ZC, Hou YL, Gao S, Sun SH (2010) Adv Mater 22:2729CrossRefGoogle Scholar
  4. 4.
    Veiseh O, Gunn JW, Zhang MQ (2010) Adv Drug Deliv Rev 62:284CrossRefGoogle Scholar
  5. 5.
    Lu Y, Yin YD, Mayers BT, Xia YN (2002) Nano Lett 2:183CrossRefGoogle Scholar
  6. 6.
    Yang HH, Zhang SQ, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Anal Chem 76:1316CrossRefGoogle Scholar
  7. 7.
    Barnakov YA, Yu MH, Rosenzweig Z (2005) Langmuir 21:7524CrossRefGoogle Scholar
  8. 8.
    He R, You XG, Shao J, Gao F, Pan BF, Cui DX (2007) Nanotechnology 18:315601CrossRefGoogle Scholar
  9. 9.
    Lai W, Garino J, Ducheyne P (2002) Biomaterials 23:213CrossRefGoogle Scholar
  10. 10.
    Stjerndahl M, Andersson M, Hall HE, Pajerowski DM, Meisel MW, Duran RS (2008) Langmuir 24:3532CrossRefGoogle Scholar
  11. 11.
    Stober W, Fink A, Bohn EW (1968) J Colloid Interface Sci 26:62CrossRefGoogle Scholar
  12. 12.
    Ma DL, Veres T, Clim L, Normandin F, Guan JW, Kingston D, Simard B (2007) J Phys Chem C 111:1999CrossRefGoogle Scholar
  13. 13.
    Wang L, Tan WH (2006) Nano Lett 6:84CrossRefGoogle Scholar
  14. 14.
    Zhao XJ, Bagwe RP, Tan WH (2004) Adv Mater 16:173CrossRefGoogle Scholar
  15. 15.
    Santra S, Zhang P, Wang KM, Tapec R, Tan WH (2001) Anal Chem 73:4988CrossRefGoogle Scholar
  16. 16.
    Chen F, Bu WB, Chen Y, Fan YC, He QJ, Zhu M, Liu XH, Zhou LP, Zhang SJ, Peng WJ, Shi JL (2009) Chem Asian J 4:1809CrossRefGoogle Scholar
  17. 17.
    Yoon TJ, Yu KN, Kim E, Kim JS, Kim BG, Yun SH, Sohn BH, Cho MH, Lee JK, Park SB (2006) Small 2:209CrossRefGoogle Scholar
  18. 18.
    Yang H, Zhuang YM, Hu H, Du XX, Zhang CX, Shi XY, Wu HX, Yang SP (2010) Adv Funct Mater 20:1733CrossRefGoogle Scholar
  19. 19.
    Zhang BB, Chen BD, Wang YL, Guo FF, Li ZQ, Shi DL (2011) J Colloid Interface Sci 353:426CrossRefGoogle Scholar
  20. 20.
    Wang XX, Zhong JY, Liu Y, Wen AX, Shan Z, Yang WS (2010) Acta Chim Sinica 68:2063Google Scholar
  21. 21.
    Lu CW, Hung Y, Hsiao JK, Yao M, Chung TH, Lin YS, Wu SH, Hsu SC, Liu HM, Mou CY, Yang CS, Huang DM, Chen YC (2007) Nano Lett 7:149CrossRefGoogle Scholar
  22. 22.
    Schartl W (2010) Nanoscale 2:829CrossRefGoogle Scholar
  23. 23.
    Cruces-Blanco C, Carretero AS, Boyle EM, Gutierrez AF (1999) Talanta 50:1099CrossRefGoogle Scholar
  24. 24.
    Tong AJ, Wu YG, Li LD (1996) Talanta 43:1429CrossRefGoogle Scholar
  25. 25.
    Qi L, Yang GL (2009) Electrophoresis 30:2882CrossRefGoogle Scholar
  26. 26.
    Sanchez FG, Blanco CC (1991) Analyst 116:851CrossRefGoogle Scholar
  27. 27.
    Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) J Phys Chem B 109:3879CrossRefGoogle Scholar
  28. 28.
    Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891CrossRefGoogle Scholar
  29. 29.
    Morel AL, Nikitenko SI, Gionnet K, Alain Wattiaux, Lai-Kee-Him J, Labrugere C, Chevalier B, Deleris G, Petibois C, Brisson A, Simonoff M (2008) ACS Nano 2:847CrossRefGoogle Scholar
  30. 30.
    Zhou JF, Meng LJ, Lu QH, Fu JW, Huang XB (2009) Chem Commun 42:6370CrossRefGoogle Scholar
  31. 31.
    Jana NR, Earhart C, Ying JY (2007) Chem Mater 19:5074CrossRefGoogle Scholar
  32. 32.
    Abboud M, Turner M, Duguet E, Fontanille M (1997) J Mater Chem 7:1527CrossRefGoogle Scholar
  33. 33.
    Albala R, Olmos D, Aznar AJ, Baselga J, Gonzalez-Benito J (2004) J Colloid Interface Sci 277:71CrossRefGoogle Scholar
  34. 34.
    Wang LY, Bao J, Wang L, Zhang F, Li YD (2006) Chem Eur J 12:6341CrossRefGoogle Scholar
  35. 35.
    Guo SJ, Li D, Zhang LM, Li J, Wang EK (2009) Biomaterials 30:1881CrossRefGoogle Scholar
  36. 36.
    Cao HN, He J, Deng L, Gao XQ (2009) Appl Surf Sci 255:7974CrossRefGoogle Scholar
  37. 37.
    Griesser T, Hofler T, Temmel S, Kern W, Trimmel G (2007) Chem Mater 19:3011CrossRefGoogle Scholar
  38. 38.
    Vogtle F, Gestermann S, Kauffmann C, Ceroni P, Vicinelli V, De Cola L, Balzani V (1999) J Am Chem Soc 121:12161CrossRefGoogle Scholar
  39. 39.
    Li ZY, Xia JL, Liang JH, Yuan JJ, Jin GJ, Yin J, Yu GA, Liu SH (2011) Dyes Pigments 90:290CrossRefGoogle Scholar
  40. 40.
    Wang Y, Ng YW, Chen Y, Shuter B, Yi J, Ding J, Wang SC, Feng SS (2008) Adv Funct Mater 18:308CrossRefGoogle Scholar
  41. 41.
    Salgueirino-Maceira V, Correa-Duarte MA, Spasova M, Liz-Marzan LM, Farle M (2006) Adv Funct Mater 16:509CrossRefGoogle Scholar
  42. 42.
    Slowing II, Wu CW, Vivero-Escoto JL, Lin VSY (2009) Small 5:57CrossRefGoogle Scholar
  43. 43.
    Yang H, Zhang JJ, Tian QW, Hu H, Fang Y, Wu HX, Yang SP (2010) J Magn Magn Mater 322:973CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.The Key Laboratory of Resource Chemistry of Ministry of Education, College of Life and Environmental ScienceShanghai Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations