Skip to main content
Log in

Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Effects of Fe and La addition on the dielectric, ferroelectric, and piezoelectric properties of Bi0.5Na0.5TiO3–Bi0.5Li0.5TiO3–BaTiO3–Mn ceramics were investigated. Similar to the doping effect in lead-based piezoelectric materials, here the Fe-doped ceramic created a hard effect with an improved mechanical quality factor (Qm) ~ 160, coercive field (Ec) ~ 2.9 kV/mm, decreased dielectric constant \( \left( {\varepsilon_{33}^{T} /\varepsilon_{0} } \right)\sim 80 3, \) and loss (tanδ) ~ 0.024 while the La-doped one indicated a soft feature with improved piezoelectric constant (d33) ~ 184 pC/N, \( \varepsilon_{33}^{T} /\varepsilon_{0} \,\sim { 983}, \) tanδ ~ 0.033, and decreased Ec ~ 2.46 kV/mm. In addition, the temperature dependence of the ferroelectric hysteresis loops and strain response under unipolar electric field was also studied. Around the depolarization temperature Td, large strain value was obtained with the normalized \( d_{33}^{*} \) up to ~1,000 pC/N, which was suggested originated from the development of the short-range order or non-polar phases in the ferroelectric matrix. All these would provide a new way to realize high piezoelectric response for practical application in different temperature scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, London

    Google Scholar 

  2. Xu Y (1991) Ferroelectric materials and their applications. North-Holland Elsevier Science, Amsterdam

    Google Scholar 

  3. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003, Official Journal of the European Union 2003, p. L37/19

  4. Rödel J, Jo W, Seifert TPK, Anton EM, Granzow T, Damjanovic D (2009) J Am Ceram Soc 92:1153

    Article  Google Scholar 

  5. Zhang ST, Kounga AB, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D (2009) Adv Mater 21:4716

    Article  CAS  Google Scholar 

  6. Liu WF, Ren XB (2009) Phys Rev Lett 103:257602

    Article  Google Scholar 

  7. Takenaka T, Nagata H, Hiruma Y (2008) Jpn J Appl Phys 47:3787

    Article  CAS  Google Scholar 

  8. Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) J Appl Phys 105:094102

    Article  Google Scholar 

  9. Shrout TR, Zhang SJ (2007) J Electroceram 19:111

    Article  CAS  Google Scholar 

  10. Smolenskii GA, Isupov VA, Agranovskaya AI, Krainik NN (1961) Sov Phys-Solid State (Engl Transl) 2:2651

    Google Scholar 

  11. Zvirgzds JA, Kapostis PP, Zvirgzde JV (1982) Ferroelectrics 40:75

    Article  CAS  Google Scholar 

  12. Jones GO, Thomas PA (2002) Acta Crystallogr B 58:168

    Article  CAS  Google Scholar 

  13. Jones GO, Thomas PA (2000) Acta Crystallogr B 56:426

    Article  Google Scholar 

  14. Nagata H, Yoshida M, Makiuchi Y, Takenaka T (2003) Jpn J Appl Phys 42:7401

    Article  CAS  Google Scholar 

  15. Wang XX, Choy SH, Tang XG, Chan HLW (2005) J Appl Phys 97:104101

    Article  Google Scholar 

  16. Shieh J, Wu KC, Chen CS (2007) Acta Mater 55:3081

    Article  CAS  Google Scholar 

  17. Lin DM, Kwok KW, Chan HLW (2007) Solid State Ionics 178:1930

    Google Scholar 

  18. Yilmaz H, Trolier-Mckinstry S, Messing GL (2003) J Electroceram 11:217

    Article  CAS  Google Scholar 

  19. Morozov MI, Damjanovic D (2008) J Appl Phys 104:034107

    Article  Google Scholar 

  20. Morozov MI, Damjanovic D (2010) J Appl Phys 107:034106

    Article  Google Scholar 

  21. Viehland D (2006) J Am Ceram Soc 89:775

    Article  CAS  Google Scholar 

  22. Jo W, Erdem E, Eichel RA, Glaum J, Granzow T, Damjanovic D, Rödel J (2010) J Appl Phys 108:014110

    Article  Google Scholar 

  23. Li JM, Wang FF, Qin XM, Xu M, Tang YX, Shi WZ (under review) J Alloy Compd

  24. Zhang ST, Kounga AB, Aulbach E, Deng Y (2008) J Am Ceram Soc 91:3950

    Article  CAS  Google Scholar 

  25. Smolenskii GA (1970) Jpn J Phys Soc Suppl 28:26

    Google Scholar 

  26. Guo YP, Liu Y, Withers RL, Brink F, Chen H (2011) Chem Mater 23:219

    Article  CAS  Google Scholar 

  27. Shannon RD (1976) Acta Crystallogr A A32:751

    Article  CAS  Google Scholar 

  28. Zhang ST, Kounga AB, Aulbach E, Granzow T, Jo W, Kleebe HJ, Rödel J (2008) J Appl Phys 10:034107

    Article  Google Scholar 

  29. Hiruma Y, Imai Y, Watanabe Y, Nagata H, Takenaka T (2008) Appl Phys Lett 92:262904

    Article  Google Scholar 

  30. Eerd BW, Damjanovic D, Klein N, Setter N, Trodahl J (2010) Phys Rev B 82:104112

    Article  Google Scholar 

  31. Hussain A, Ahn CW, Lee JS, Ullah A, Kim IW (2010) Sens Actuators A 158:84

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Science and Technology Commission of Shanghai Municipality (Grant No. 10ZR1422300 and 09520501000), Innovation Program of Shanghai Municipal Education Commission (09YZ151, 11YZ82, 11YZ83, and 11ZZ117), Shanghai Normal University Program (SK201026, PL929 and SK200708), National Natural Science Foundation of China (Grant No. 60807036), and Condensed Physics of Shanghai Normal University (Grant No. DZL712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wang, F., Leung, C.M. et al. Large strain response in acceptor- and donor-doped Bi0.5Na0.5TiO3-based lead-free ceramics. J Mater Sci 46, 5702–5708 (2011). https://doi.org/10.1007/s10853-011-5523-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5523-7

Keywords

Navigation