Skip to main content

Advertisement

Log in

A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A mechanical constitutive model of powder material is introduced to a fully coupled thermal–electric–mechanical finite element model to simulate the one-step-forming spark plasma sintering (SPS) process of metal powders. The effects of displacement field and local density distribution on sintering are considered in this article, which are generally neglected in the existing SPS models. The mechanical, thermal, and electrical parameters of powders are assumed as functions of local relative density and temperature. The simulated varying displacement field remodels the distributions of temperature and electric potential by changing the contact thermoelectric resistances. For the 20, 40, and 60 MPa external pressures, the simulation indicates that the sintering temperature and the temperature gradient within powders are decreased by enhancing the external pressure, and the comprehensive effect of stress promotes the densification of the colder regions. Thus, the interrelationship between the temperature gradient and the intrinsic stress distribution plays an important role in the densification mechanism of SPS powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Langer J, Hoffmann MJ, Guillon O (2009) Acta Mater 57:5454

    Article  CAS  Google Scholar 

  2. Zavaliangos A, Zhang J, Krammer M, Groza JR (2004) Mater Sci Eng A 379:218. doi:https://doi.org/10.1016/j.msea.2004.01.052

    Article  Google Scholar 

  3. Tiwari D, Basu B, Biswas K (2009) Ceramics Int 35:699. doi:https://doi.org/10.1016/j.ceramint.2008.02.013

    Article  CAS  Google Scholar 

  4. Maizza G, Grasso S, Sakka Y (2009) J Mater Sci 44:1219. doi:https://doi.org/10.1007/s10853-008-3179-8

    Article  CAS  Google Scholar 

  5. Yang J, Li Y, Li X, Guo L, Chen W (2007) Special Cast Nonferrous Alloy 27:24 In Chinese

    Google Scholar 

  6. Liu X-M, Song X-Y, Zhang J-X, Zhao S-X, Wei J (2008) Chinese J Nonferrous Metal 18:221 In Chinese

    Google Scholar 

  7. Hulbert DM, Jiang D, Anselmi-Tamburini U, Unuvar C, Mukherjee AK (2008) Mater Sci Eng A 488:333. doi:https://doi.org/10.1016/j.msea.2007.11.054

    Article  Google Scholar 

  8. Vanmeensel K, Laptev A, Van der Biest O, Vleugels J (2007) J Euro Ceramic Soc 27:979. doi:https://doi.org/10.1016/j.jeurceramsoc.2006.04.142

    Article  CAS  Google Scholar 

  9. Wang X, Casolco SR, Xu G, Garay JE (2007) Acta Mater 55:3611

    Article  CAS  Google Scholar 

  10. McWilliams B, Zavaliangos A (2008) J Mater Sci 43:5031. doi:https://doi.org/10.1007/s10853-008-2744-5

    Article  CAS  Google Scholar 

  11. Grasso S, Sakka Y, Maizza G, Hu C (2009) J Am Ceram Soc 92:2418

    Article  CAS  Google Scholar 

  12. Matsugi K, Kuramoto H, Yanagisawa O, Kiritani M (2003) Mater Sci Eng A 354:234. doi:https://doi.org/10.1016/s0921-5093(03)00012-1

    Article  Google Scholar 

  13. Anselmi-Tamburini U, Gennari S, Garay JE, Munir ZA (2005) Mater Sci Eng A 394:139. doi:https://doi.org/10.1016/j.msea.2004.11.019

    Article  Google Scholar 

  14. Wang D, Wu Y, Jiao M, Yu J, Xie T, Yin Y (2008) Powder Metall Technol 26:88 In Chinese

    Google Scholar 

  15. Montes JM, Cuevas FG, Cintas J (2007) Metall Mater Trans B Proc Metall Mater Proc Sci 38:957

    Article  Google Scholar 

  16. Doraivelu SM, Gegel HL, Gunasekera JS, Malas JC, Morgan JT, Thomas JF Jr (1984) Int J Mech Sci 26:527. doi:https://doi.org/10.1016/0020-7403(84)90006-7

    Article  Google Scholar 

  17. Li Y-Y, Zhao W-B, Zhou Z-Y, Chen P-Q (2006) Trans Nonferrous Metal Soc China (English Edition) 16:311

    Article  Google Scholar 

  18. Li Y-y, Chen P-q, Xia W, Zhou Z-y, Li W-f (2006) Trans Nonferrous Metal Soc China 16:507. doi:https://doi.org/10.1016/s1003-6326(06)60088-5

    Article  CAS  Google Scholar 

  19. Song Y, Li Y-Y, Zhou Z-Y, Zheng Z-X, Chen P-Q (2010) Trans Nonferrous Metals Soc China (English Edition) 20:1470

    Article  CAS  Google Scholar 

  20. Kim HS, Lee DN (1999) Mater Sci Eng A 271:424. doi:https://doi.org/10.1016/s0921-5093(99)00279-8

    Article  Google Scholar 

  21. Wikman B, Svoboda A, Haggblad HA (2000) Comput Method Appl Mech Eng 189:901

    Article  Google Scholar 

  22. Zhang J, Zavaliangos A, Kraemer M, Groza J (2002) In: Proceedings of a symposium on modelling the performance of engineering structural materials III, Minerals, Metals and Materials Society, Columbus

  23. Wang C, Cheng L, Zhao Z (2010) Comput Mater Sci 49:351. doi:https://doi.org/10.1016/j.commatsci.2010.05.021

    Article  CAS  Google Scholar 

  24. Conway JJ, Nettleship I, McAfee RJ, Loehlein ES (2002) In: Advance in powder metallurgy and particulate materials 2002, vol 9. (published by MPIF)

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant no. 50325516) and the Fundamental Research Funds for the Central Universities, SCUT (Grant no. 2009ZM0040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Song.

Appendix

Appendix

Iron properties

$$ \begin{aligned} \rho \left( {{\text{kg m}}^{ - 3} } \right) \,& = { 788}0 \\ E_{\text{s}} \left( T \right)\left( {\text{GPa}} \right) & = 1.96 \times 10^{2} (1 - 2.1 \times 10^{ - 4} (T - 298) - 1.7 \times 10^{ - 7} (T - 298)^{2} - 3.2 \times 10^{ - 10} (T - 298)^{3} ) \\ \alpha \left( T \right)\left( {1/{\text{K}}} \right) & = \left( {4.994 + 0.030T - 2.696 \times 10^{ - 5} T^{2} + 8.390 \times 10^{ - 9} T^{3} } \right) \times 10^{ - 6} \\ K_{\text{s}} (T)\left( {{\text{W/}}\left( {\text{m K}} \right)} \right) & = 73.014 - 5.0 \times 10^{{^{ - 2} }} \left( {T - 273} \right) - 7.096 \times 10^{{^{ - 5} }} \left( {T - 273} \right)^{2} + 1.366 \times 10^{{^{ - 7} }} \left( {T - 273} \right)^{3} - \\ \, & \quad 5.323 \times 10^{{^{ - 11} }} \left( {T - 273} \right)^{4} \\ R_{\text{s}} (T)\left( {1/\left( {\Upomega {\text{ m}}} \right)} \right) & = \left( {0.096 + 2.139 \times 10^{ - 4} \left( {T - 273} \right) + 2.240 \times 10^{ - 6} \left( {T - 273} \right)^{2} - 1.803 \times 10^{ - 9} \left( {T - 273} \right)^{3}} \right. \\ \, & \left. {\quad + 3.571 \times 10^{ - 13} \left( {T - 273} \right)^{4} } \right)^{ - 1} \times 10^{6} \\ c_{\user2{p}} \left( T \right)\left( {{\text{J/}}\left( {\text{kg K}} \right)} \right) & = 317.202 + 0.433 \times T \\ \end{aligned} $$

Graphite properties

$$ \begin{aligned} \rho \left( {{\text{kg m}}^{ - 3} } \right) \, & = { 185}0 \\ E\left( {\text{GPa}} \right) & = 200 \\ \alpha \left( T \right)\left( {1/{\text{K}}} \right) & = 8 \times 10^{ - 6} \\ K(T)\left( {{\text{W/}}\left( {\text{m K}} \right)} \right) & = 65 - 1.7 \times 10^{ - 2} T \\ R(T)\left( {1/\left( {\Upomega {\text{ m}}} \right)} \right) & = \left( {26 - 3 \times 10^{ - 2} T + 2 \times 10^{ - 5} T^{2} - 6.4 \times 10^{ - 9} T^{3} + 7.8 \times 10^{ - 13} T^{4} } \right)^{ - 1} \times 10^{6}\,[23] \\ c_{\user2{p}} \left( T \right)\left( {{\text{J/}}\left( {\text{kg K}} \right)} \right) & = 310.5 + 1.7 \times T \\ \end{aligned} $$

Silicon–nitride properties

$$ \begin{aligned} \rho \left( {{\text{kg m}}^{ - 3} } \right) \, & = { 3184} \\ E\left( {\text{GPa}} \right) & = 330 \\ \alpha \left( T \right)\left( {1/{\text{K}}} \right) & = 2.7 \times 10^{ - 6} \left( {0.856 + 4.919 \times 10^{ - 4} T} \right) \\ K\left( T \right)\left( {{\text{W/}}\left( {\text{m K}} \right)} \right) & = 34.271 - 0.0141 \times T \\ c_{\user2{p}}\left( {{\text{J/}}\left( {\text{kg K}} \right)} \right) & = 740 \\ \end{aligned} $$

Copper properties [9]

$$ \begin{aligned} \rho \left( {{\text{kg m}}^{ - 3} } \right) \, & = { 785}0 \\ K\left( T \right)\left( {{\text{W/}}\left( {\text{m K}} \right)} \right) & = 420.66 + 0.07 \times T \\ R\left( T \right)\left( { 1 /\left( {\Upomega {\text{ m}}} \right)} \right) & = \left( {5.5 + 0.038 \times T} \right)^{ - 1} \times 10^{9} \\ c_{\user2{p}} \left( T \right)\left( {{\text{J/}}\left( {\text{kg K}} \right)} \right) & = 355.3 + 0.1 \times T \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Li, Y., Zhou, Z. et al. A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material. J Mater Sci 46, 5645–5656 (2011). https://doi.org/10.1007/s10853-011-5515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5515-7

Keywords

Navigation