Journal of Materials Science

, Volume 46, Issue 17, pp 5639–5644 | Cite as

The effect of preparation method on the activities of Pd–Fe–Ox/Al2O3 catalysts for CO oxidation



The Pd–Fe–Ox/Al2O3 catalysts were prepared by co-impregnation (co-Pd–Fe–Ox/Al2O3) and sol–gel method (sol–gel–Pd–Fe–Ox/Al2O3) and characterized by N2 adsorption–desorption, X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The CO catalytic oxidation was investigated over Pd–Fe–Ox/Al2O3 catalysts prepared by different methods. The 100% conversion temperature (T 100) over pre-reduced co-Pd–Fe–Ox/Al2O3 (co-Pd–Fe–Ox/Al2O3–R) and pre-reduced sol–gel–Pd–Fe–Ox/Al2O3 (sol–gel–Pd–Fe–Ox/Al2O3–R) is 90 and 25 °C when fed with the reaction mixture containing 1 vol.% CO and a balance of air, respectively. XRD results indicate that the sol–gel method is favorable for the high dispersion of PdO particles compared with co-impregnation method. H2-TPR results suggest that the interaction between Pd and Fe is existent over both sol–gel–Pd–Fe–Ox/Al2O3 and co-Pd–Fe–Ox/Al2O3 catalysts, while the interaction in former catalyst is stronger than that in the latter. The XPS results show that the Pd species on the surface of both sol–gel–Pd–Fe–Ox/Al2O3–R and co-Pd–Fe–Ox/Al2O3–R catalysts are the mixture of oxide and metal state, leading to the high activity for CO oxidation. Furthermore, the different Pd2+/Pd0 ratio may be the reason for the different activity between sol–gel–Pd–Fe–Ox/Al2O3–R and reduced co-Pd–Fe–Ox/Al2O3–R catalysts.


Fe2O3 Reduction Peak Bimetallic Catalyst Conversion Temperature Surface Atom Ratio 



This project was supported financially by National Basic Research Program of China (2010CB732300), National Key Technologies R & D Program of China (2007BAJ03B01), Education Commission of Shanghai Municipality (2008CG35), Science and Technology Commission of Shanghai Municipality (09ZR1408200).


  1. 1.
    Cutrufello MG, Rombi E, Cannas C, Casu M, Virga A, Fiorilli S, Onida B, Ferino I (2009) J Mater Sci 44:6644. doi: 10.1007/s10853-009-3510-z CrossRefGoogle Scholar
  2. 2.
    Margitfalvi JL, Borbáth I, Hegedús M, Tfirst E, Góbölös S, Lázár K (2000) J Catal 196:200CrossRefGoogle Scholar
  3. 3.
    Bi YS, Chen L, Lu GX (2007) J Mol Catal A 266:173CrossRefGoogle Scholar
  4. 4.
    Qiao BT, Liu LQ, Zhang J, Deng YQ (2009) J Catal 261:241CrossRefGoogle Scholar
  5. 5.
    Shen YX, Lu GZ, Guo Y, Wang YQ (2010) Chem Commun 46:8433CrossRefGoogle Scholar
  6. 6.
    Liu LQ, Zhou F, Wang LG, Qi XJ, Shi F, Deng YQ (2010) J Catal 274:1CrossRefGoogle Scholar
  7. 7.
    Yu YB, Takei T, Ohashi H, He H, Zhang XL, Haruta M (2009) J Catal 267:121CrossRefGoogle Scholar
  8. 8.
    Iablokov V, Frey K, Geszti O, Kruse N (2010) Catal Lett 134:210CrossRefGoogle Scholar
  9. 9.
    Lin HY, Chen YW, Wang WJ (2005) J Nanopart Res 7:249CrossRefGoogle Scholar
  10. 10.
    Cao JL, Shao GS, Ma TY, Wang Y, Ren TZ, Wu SH, Yuan ZY (2009) J Mater Sci 44:6717. doi: 10.1007/s10853-009-3583-8 CrossRefGoogle Scholar
  11. 11.
    Liu Y, Wen C, Guo Y, Lu GZ, Wang YQ (2010) J Mol Catal A 316:59CrossRefGoogle Scholar
  12. 12.
    Cao JL, Deng QF, Yuan ZY (2009) J Mater Sci 44:6663. doi: 10.1007/s10853-009-3582-9 CrossRefGoogle Scholar
  13. 13.
    Lin SD, Gluhoi AC, Nieuwenhuys BE (2004) Catal Today 90:3CrossRefGoogle Scholar
  14. 14.
    Liu XS, Korotkikh O, Farrauto R (2002) Appl Catal A 226:293Google Scholar
  15. 15.
    Sirijaruphan A, Goodwin JG Jr, Rice RW (2004) J Catal 224:304CrossRefGoogle Scholar
  16. 16.
    Son IH, Lane AM (2001) Catal Lett 76:151CrossRefGoogle Scholar
  17. 17.
    Profeti LPR, Ticianelli EA, Assaf EM (2008) Fuel 87:2076CrossRefGoogle Scholar
  18. 18.
    García MF, Arias AM, Yuez AI, Hungría AB, Anderson JA, Conesa JC, Soria J (2003) J Catal 214:220CrossRefGoogle Scholar
  19. 19.
    Ciuparu D, Bensalem A, Pfefferle L (2000) Appl Catal B 26:241CrossRefGoogle Scholar
  20. 20.
    Pârvulescu VI, Filoti G, Pârvulescu V, Grecu N, Angelescu E, Nicolescu LV (1994) J Mol Catal 89:267CrossRefGoogle Scholar
  21. 21.
    Bachir R, Marecot P, Didillon B, Barbier J (1997) Appl Catal A 164:313CrossRefGoogle Scholar
  22. 22.
    Nagpal V, Bokara AD, Chikate RC, Rode CV, Paknikar KM (2010) J Hazard Mater 175:680CrossRefGoogle Scholar
  23. 23.
    Babu NS, Lingaiah N, Kumar JV, Sai Prasad PS (2009) Appl Catal A 367:70CrossRefGoogle Scholar
  24. 24.
    Berry FJ, X CH, Jobson S (1990) J Chem Soc Faraday Trans 86:165CrossRefGoogle Scholar
  25. 25.
    Yue BH, Zhou RX, Zheng XM, Lu WC (2008) Fuel Process Technol 89:728CrossRefGoogle Scholar
  26. 26.
    Moulder JF, Stickle WF, Esoble PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., USAGoogle Scholar
  27. 27.
    Guzman J, Gates BC (2004) J Am Chem Soc 126:2672CrossRefGoogle Scholar
  28. 28.
    Szegedi A, Hegedus M, Margitfalvi JL, Kiricsi I (2005) Chem Commun 11:1441CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Lab for Advanced Materials, Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations