Journal of Materials Science

, Volume 46, Issue 16, pp 5417–5422 | Cite as

Structural and dielectrical studies on mechano-chemically synthesized indium doped CdS nanopowders



Incorporation of indium (dopant) into CdS crystals have been successfully achieved by a mechanical alloying process. Powders are prepared with various In/Cd ratio from 1 to 10 at% and milled at 300 revolution per minute (rpm) for 60 min. X-ray diffraction (XRD) analysis of milled In doped CdS compound showed that the major phase of the product was wurtzite with grain sizes varying from 37 to 42 nm corresponding to change in In/Cd compositions. High resolution transmission electron microscopy (HRTEM) images as well as Fourier transformation in reciprocal space provide a good pathway to identify the structure of individual CdS nanocrystals, whose dominant phase was determined to be wurtzite structure along with zinc blende structure. Field emission scanning electron microscopy (FESEM) images reveal that CdS crystal prefers to grow along the (001) direction rather than (110) due to its high surface energy. The Raman spectra of CdS:In particles present well-resolved lines at approximately 303 and 600 cm−1, corresponding to the first and second-order scatterings, respectively, of the longitudinal optical (LO) phonon mode. Dielectrical studies showed that dielectrical constant (ε′) decreased with increase in frequency, whereas AC conductivity (σAC) in In doped CdS increases with increase in frequency and also both the values increased with increase in doping concentration.


High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy High Resolution Transmission Electron Microscopy Image High Resolution Scanning Electron Microscopy Longitudinal Optical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



X-ray diffraction


High resolution transmission electron microscopy


Field emission scanning electron microscopy


Energy dispersive analysis of X-rays


Pulsed laser deposition


Chemical bath deposition


Joint Committee on Powder Diffraction Standards


Broadband dielectric converter


Fast Fourier transformations


Inverse fast Fourier transformation


Longitudinal optical



Authors thank Dr. Miguel Avalos of IPICyT for providing HRTEM facilities and Miguel Galvan of SEES-IE, CINVESTAV for Raman measurements. We are thankful to N. Errien of Université du Maine, France for dielectrical measurements. B. J. Babu thanks CONACyT for providing scholarship to pursue doctoral program in Mexico.


  1. 1.
    Cao G (2004) Nanostructures and nanomaterials synthesis, properties and applications. Imperial College Press, LondonCrossRefGoogle Scholar
  2. 2.
    Afzaal M, O’Brien P (2006) J Mater Chem 16:1597CrossRefGoogle Scholar
  3. 3.
    Chopra KL, Paulson PD, Dutta V (2004) Prog Photovolt Res Appl 12:69CrossRefGoogle Scholar
  4. 4.
    Shi CY, Sun Y, He Q, Li FY, Zhao JC (2009) Sol Energy Mater Sol Cells 93:654CrossRefGoogle Scholar
  5. 5.
    Cha D, Kim S, Huang NK (2004) Mater Sci Eng B106:63CrossRefGoogle Scholar
  6. 6.
    Megahid NM, Wakkad MM, Shokr EKH, Abass NM (2004) Phys B 353:150CrossRefGoogle Scholar
  7. 7.
    Bertran E, Morenza JL, Esteve J, Codina JM (1984) J Phys D Appl Phys 1(7):1679CrossRefGoogle Scholar
  8. 8.
    Dhere NG, Moutinho HR, Dhere RG (1987) J Vac Sci Technol A 5(4):1956CrossRefGoogle Scholar
  9. 9.
    Ikhmayies SJ, Ahmad-Bitar RN (2008) Amc J Appl Sci 5(9):1141CrossRefGoogle Scholar
  10. 10.
    Perna G, Capozzi V, Ambrico M, Augelli V, Ligonzo T, Minafra A, Schiavulli L, Pallara M (2004) Thin Solid Films 453–454:187CrossRefGoogle Scholar
  11. 11.
    Dávila-Pintle JA, Lozada-Morales R, Palomino-Merino R, Rebollo-plata B, Martinez-Hipati C, Portillo-Moreno O, Jimenez-Sandoval S, Zelaya-Angel O (2006) AZojomo (ISSN 1833-122X) 2:1Google Scholar
  12. 12.
    Tiwari S, Tiwari S (2006) Cryst Res Technol 41(1):78CrossRefGoogle Scholar
  13. 13.
    Kotkata MF, Masoud AE, Mohamed MB, Mahmoud EA (2009) Phys E 41:1457CrossRefGoogle Scholar
  14. 14.
    Pinna N, Weiss K, Sack-kongehi H, Vogel W, Urban J, Pileni MP (2001) Langmuir 17:7982CrossRefGoogle Scholar
  15. 15.
    Godočíková E, Balaz P, Gock E, Choi WS, Kim BS (2006) Powder Technol 164:147CrossRefGoogle Scholar
  16. 16.
    Tabellout M, Kassiba A, Tkaczyk S, Laskowski L, Swiatek J (2006) J Phys Condens Matter 18:1143CrossRefGoogle Scholar
  17. 17.
    Durose K, Fellows AT, Brinkman AW, Russell GJ, Woods J (1985) J Mater Sci 20:3783. doi: 10.1007/BF01113788 CrossRefGoogle Scholar
  18. 18.
    Tsuzuki T, McCormick PG (1997) Appl Phys A 65:607CrossRefGoogle Scholar
  19. 19.
    Tan GL, Du JH, Zhang QJ (2009) J Alloys Compd 468:421CrossRefGoogle Scholar
  20. 20.
    Tan GL, Zhang L, Yu Xue-Feng (2010) J Phys Chem C 114:290CrossRefGoogle Scholar
  21. 21.
    Dutkova E, Balaz P, Pourghahramani P, Velumani S, Ascencio JA, Kostova NG (2009) J Nanosci Nanotechnol 9:1CrossRefGoogle Scholar
  22. 22.
    Xue M, Zhang X, Wang X, Tang B (2010) Mater Lett 64:1357CrossRefGoogle Scholar
  23. 23.
    Velumani S, Narayandass SaK, Mangalaraj D, Sebastian PJ, Mathew X (2004) Sol Energy Mater Sol Cells 81:323CrossRefGoogle Scholar
  24. 24.
    Tripathi R, Kumar A, Sinha TP (2009) Pramana J Phys 72(6):969CrossRefGoogle Scholar
  25. 25.
    Matheswaran P, Sathyamoorthy R, Saravanakumar R, Velumani S (2010) Mater Sci Eng B 174:269CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Departamento de Ingeniería Eléctrica-SEESCINVESTAV-IPNZacatencoMexico
  2. 2.Laboratoire de Physique de l’Etat Condensé—UMR CNRS 6087Université du MaineLe MansFrance

Personalised recommendations