Journal of Materials Science

, Volume 46, Issue 16, pp 5400–5405 | Cite as

Electrocatalytic activity of undoped and Mn-doped Zn(S,Se)-carbon nanocomposites



Electrocatalytic materials for applications, e.g. in fuel cells are often composites of (conducting) carbon variants and nanosized metal particles, typically from the family of platinum or nickel. They share some common problems (most notably a tendency to agglomeration and poisoning, e.g. by CO or H2), which prevent their use in contact with, e.g. raw biogenic methane or ethanol. Highly purified fuels or reformation to hydrogen are therefore necessary for such purposes. As a potential alternative, this study describes electrocatalytic activity of composites of undoped and Mn-doped Zn(S,Se) nanoparticles and carbon in contact with ethanol. The results on ethanol oxidation on such electrodes in short-circuit mode are reported, as well as values for the open circuit voltage achieved so far. The focus of this report is the variation of the Se/S ratio in mixed nanocrystals of ZnS and ZnSe. The influence on the electrocatalytic activity by the varying band gap energy and absolute positions of the electronic levels of the doped as well as undoped chalcogenide nanoparticles is reported.


ZnSe Activate Carbon Powder Conduction Band Edge H2Se Dope Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the German state of North-Rhine–Westphalia in the framework of the competence platform “Optical Technologies”. Thanks are due to the groups of Thomas Jüstel and Ulrich Kynast at Fachhochschule Münster for help with the spectroscopical measurements.


  1. 1.
    Klausch A, Althues H, Schrage C, Simon P, Szatkowski A, Bredol M, Adam D, Kaskel S (2010) J Lumin 130:692. doi: 10.1016/j.jlumin.2009.11.021 CrossRefGoogle Scholar
  2. 2.
    Bredol M, Matras K, Szatkowski A, Sanetra J, Prodi-Schwab A (2009) Sol Energy Mater Sol Cells 93(5):662. doi: 10.1016/j.solmat.2008.12.015 CrossRefGoogle Scholar
  3. 3.
    Yang P, Szatkowski A, Bredol M (2009) J Sol–Gel Sci Technol 51(3):306. doi: 10.1007/s10971-009-1979-1 CrossRefGoogle Scholar
  4. 4.
    Hebalkar N, Lobo A, Sainkar S, Pradhan S, Vogel W, Urban J, Kulkarni S (2001) J Mater Sci 36:4377. doi: 10.1023/A:1017910131081 CrossRefGoogle Scholar
  5. 5.
    Zhang WH, Shi JL, Chen HR, Hua ZL, Yan DS (2001) Chem Mater 13:648CrossRefGoogle Scholar
  6. 6.
    Matras K, Bredol M, Szatkowski A, Sakhno O, Stumpe J, Bogdal D (2008) Mol Cryst Liq Cryst 485:28CrossRefGoogle Scholar
  7. 7.
    Althues H, Palkovits R, Rumplecker A, Simon P, Sigle W, Bredol M, Kynast U, Kaskel S (2006) Chem Mater 18:1068CrossRefGoogle Scholar
  8. 8.
    Wang C, Gao X, Ma Q, Su X (2009) J Mater Chem 19:7016. doi: 10.1039/b909546b CrossRefGoogle Scholar
  9. 9.
    Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL (2005) Angew Chem Int Ed 44(8):1269CrossRefGoogle Scholar
  10. 10.
    Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S (1998) Langmuir 14:5154CrossRefGoogle Scholar
  11. 11.
    Wang C, Ao Y, Wang P, Zhang S, Qian J, Hou J (2010) Appl Surf Sci 256:4125. doi: 10.1016/j.apsusc.2010.01.095 CrossRefGoogle Scholar
  12. 12.
    Taghvaei V, Habibi-Yangjeh A, Behboudnia M (2010) Physica E 42:1973. doi: 10.1016/j.physe.2010.02.023 CrossRefGoogle Scholar
  13. 13.
    Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M, Zhang J, Marinkovic N, Liu P, Frenkel A, Adzic R (2009) Nat Mater 8:325. doi: 10.1038/NMAT2359 CrossRefGoogle Scholar
  14. 14.
    Mann J, Yao N, Bocarsly AB (2006) Langmuir 22:10432CrossRefGoogle Scholar
  15. 15.
    Nanda J, Sapra S, Sarma D, Chandrasekharan N, Hodes G (2000) Chem Mater 12:1018CrossRefGoogle Scholar
  16. 16.
    Bredol M, Kaczmarek M (2010) J Phys Chem A 114(11):3950. doi: 10.1021/jp907369f CrossRefGoogle Scholar
  17. 17.
    McCreery RL (2008) Chem Rev 108:2646CrossRefGoogle Scholar
  18. 18.
    Brus LE (1984) J Chem Phys 80(9):4403. doi: 10.1063/1.447218 CrossRefGoogle Scholar
  19. 19.
    Jasieniak J, Pacifico J, Signorini R, Chiasera A, Ferrari M, Martucci A, Mulvaney P (2007) Adv Funct Mater 17:1654. doi: 10.1002/adfm.200600955 CrossRefGoogle Scholar
  20. 20.
    Van de Walle CG, Neugebauer J (2003) Nature 423:626CrossRefGoogle Scholar
  21. 21.
    Zhuang J, Zhang X, Wang G, Li D, Yang W, Li T (2003) J Mater Chem 13:1853CrossRefGoogle Scholar
  22. 22.
    Rogach A, Kornowski A, Gao M, Eychmüller A, Weller H (1999) J Phys Chem B 103:3065. doi: 10.1021/jp984833b CrossRefGoogle Scholar
  23. 23.
    Rogach A, Katsikas L, Kornowski A, Su D, Eychmüller A, Weller H (1996) Ber Bunsenges Phys Chem 100:1772Google Scholar
  24. 24.
    Du J, Fu L, Liu Z, Han B, Li Z, Liu Y, Sun Z, Zhu D (2005) J Phys Chem B 109:12772CrossRefGoogle Scholar
  25. 25.
    Xiao Q, Xiao C (2008) Opt Mater 31(2):455. doi: 10.1016/j.optmat.2008.06.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical EngineeringFachhochschule MünsterSteinfurtGermany

Personalised recommendations