Advertisement

Method for effective immobilization of Ag nanoparticles/graphene oxide composites on single-stranded DNA modified gold electrode for enzymeless H2O2 detection

  • Wenbo Lu
  • Guohui Chang
  • Yonglan Luo
  • Fang Liao
  • Xuping Sun
Article

Abstract

In this paper, we report a new method for effective immobilization of Ag nanoparticles (AgNPs) decorated graphene oxide (AgNP/GO) composites onto thiolated single-stranded DNA decorated Au electrode (AuE) surface. The novel immobilization method is based on the coordination interactions and π–π stacking interactions between DNA bases and AgNP/GO composites. The morphologies of the AgNP/GO nanocomposites are characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). It is found that the AgNP/GO-decorated AuE exhibits remarkable catalytic performance for H2O2 reduction. This H2O2 sensor has a fast amperometric response time of less than 5 s. The linear range is estimated to be from 0.1 mM to 20 mM (r = 0.998) and the detection limit is estimated to be 1.9 μM at a signal-to-noise ratio of 3, respectively.

Keywords

Graphene Oxide Sodium Borohydride Adsorption Time Phosphate Buffer Saline Solution Coordination Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  2. 2.
    Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei ZQ, Sheehan P, Houston BH (2008) Nano Lett 8:3441CrossRefGoogle Scholar
  3. 3.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Small JP, Amori MES, Kim P (2005) Phys Rev Lett 94:176803CrossRefGoogle Scholar
  5. 5.
    Liu Z, Robinson JT, Sun XM, Dai HJ (2008) J Am Chem Soc 130:10876CrossRefGoogle Scholar
  6. 6.
    Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) J Am Chem Soc 130:16201CrossRefGoogle Scholar
  7. 7.
    Zhang M, Yin BC, Tan WH, Ye BC (2011) Biosens Bioelectron 26:3260CrossRefGoogle Scholar
  8. 8.
    Li XL, Wang XR, Zhang L, Lee SW, Dai HJ (2008) Science 319:1229CrossRefGoogle Scholar
  9. 9.
    Scheuermann GM, Rumi LG, Steurer P, Bannwarth W, Mulhaupt R (2009) J Am Chem Soc 131:8262CrossRefGoogle Scholar
  10. 10.
    Jasuja K, Berry V (2009) ACS Nano 3:2358CrossRefGoogle Scholar
  11. 11.
    Kong BSZ, Geng JX, Jung HT (2009) Chem Commun 2174Google Scholar
  12. 12.
    Li YM, Tang LH, Li JH (2009) Electrochem Commun 11:846CrossRefGoogle Scholar
  13. 13.
    Liu JB, Li YL, Li YM, Li JH, Deng ZX (2010) J Mater Chem 20:900CrossRefGoogle Scholar
  14. 14.
    Paek SM, Yoo EJ, Honma I (2009) Nano Lett 9:72CrossRefGoogle Scholar
  15. 15.
    Seger B, Kamat PV (2009) J Phys Chem 113:7990Google Scholar
  16. 16.
    Hong WJ, Bai H, Xu YX, Yao ZY, Gu ZZ, Shi GQ (2010) J Phys Chem C 114:1822CrossRefGoogle Scholar
  17. 17.
    Jang BZ, Zhamu A (2008) J Mater Sci 43:5092. doi: 10.1007/s10853-008-2755-2 CrossRefGoogle Scholar
  18. 18.
    Liu J, Fu S, Yuan B, Li Y, Deng Z (2010) J Am Chem Soc 132:7279CrossRefGoogle Scholar
  19. 19.
    Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339CrossRefGoogle Scholar
  20. 20.
    Chung DDL (2002) J Mater Sci 37:1475. doi: 10.1023/A:1014915307738 CrossRefGoogle Scholar
  21. 21.
    Xu C, Wang X (2009) Small 19:121117Google Scholar
  22. 22.
    Pasricha R, Gupta S, Srivastava AK (2009) Small 5:253Google Scholar
  23. 23.
    Lu G, Mao S, Park S, Ruoff RS, Chen J (2009) Nano Res 2:192CrossRefGoogle Scholar
  24. 24.
    Jin E, Lu X, Cui L, Chao D, Wang C (2010) Electrochim Acta 55:7230CrossRefGoogle Scholar
  25. 25.
    Wang Y, Shao Y, Matson D, Li J, Lin Y (2010) ACS Nano 4:1790CrossRefGoogle Scholar
  26. 26.
    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Biosens Bioelectron 25:901CrossRefGoogle Scholar
  27. 27.
    Cassagneau T, Fendler JH (1999) J Phys Chem B 103:1789CrossRefGoogle Scholar
  28. 28.
    Ji Q, Honma I, Paek SM, Akada M, Hill AJ, Vinu A, Ariga K (2010) Angew Chem Int Ed 49:9737CrossRefGoogle Scholar
  29. 29.
    Zeng GH, Xing YB, Gao J, Wang ZQ, Zhang X (2010) Langmuir 26:15022CrossRefGoogle Scholar
  30. 30.
    Zhu CZ, Guo SJ, Zhai YM, Dong SJ (2010) Langmuir 26:7614CrossRefGoogle Scholar
  31. 31.
    Dai JH, Bruening ML (2002) Nano Lett 2:497CrossRefGoogle Scholar
  32. 32.
    Liu S, Tian JQ, Wang L, Li HL, Zhang YW, Sun XP (2010) Macromolecules 43:10078CrossRefGoogle Scholar
  33. 33.
    Yang SL, Xu BF, Zhang JQ, Huang XD, Ye JS, Yu CZ (2010) J Phys Chem C 114:4389CrossRefGoogle Scholar
  34. 34.
    Fang YX, Guo SJ, Zhu CZ, Zhai YM, Wang EK (2010) Langmuir 26:11277CrossRefGoogle Scholar
  35. 35.
    Welch CM, Banks CE, Simm AO, Compton RG (2005) Anal Bioanal Chem 382:12CrossRefGoogle Scholar
  36. 36.
    Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FYC, Yan QY, Chen P, Zhang H (2009) J Phys Chem C 113:10842CrossRefGoogle Scholar
  37. 37.
    Zhou YG, Chen JJ, Wang FB, Sheng ZH, Xia XH (2010) Chem Commun 46:5951CrossRefGoogle Scholar
  38. 38.
    Song YH, Cui K, Wang L, Chen SH (2009) Nanotechnology 20:105501CrossRefGoogle Scholar
  39. 39.
    Wu S, Zhao HT, Shi CG, Zhao JW, Ju HX (2006) Electrochem Commun 8:1197CrossRefGoogle Scholar
  40. 40.
    Luo X, Xu J, Zhao W, Chen H (2004) Biosens Bioelectron 19:1295CrossRefGoogle Scholar
  41. 41.
    Cipriano TC, Takahashi PM, Lima D, Oliveira VX Jr, Souza JA, Martinho H, Alves WA (2010) J Mater Sci 45:5101. doi: 10.1007/s10853-010-4478-4 CrossRefGoogle Scholar
  42. 42.
    Lu X, Zhou J, Lu W, Liu Q, Li J (2008) Biosens Bioelectron 23:1236CrossRefGoogle Scholar
  43. 43.
    Shu X, Chen Y, Yuan H, Gao S, Xiao D (2007) Anal Chem 79:3695CrossRefGoogle Scholar
  44. 44.
    Matsubara C, Kawamoto N, Takamura K (1992) Analyst 117:1781CrossRefGoogle Scholar
  45. 45.
    Hurdis CH, Romeyn H (1954) Anal Chem 26:320CrossRefGoogle Scholar
  46. 46.
    Nakashima K, Maki K, Kawaguohi S, Akiyama S, Tsukamoto Y, Kazuhiro I (1991) Anal Sci 7:709CrossRefGoogle Scholar
  47. 47.
    Chen SH, Yuan R, Chai YQ, Zhang LY, Wang N, Li XL (2007) Biosens Bioelectron 22:1268CrossRefGoogle Scholar
  48. 48.
    Jia JB, Wang BQ, Wu AG, Cheng GJ, Li Z, Dong SJ (2002) Anal Chem 74:2217CrossRefGoogle Scholar
  49. 49.
    Luo XL, Xu J, Zhang Q, Yang GJ, Chen HY (2005) Biosens Bioelectron 21:190CrossRefGoogle Scholar
  50. 50.
    Song Y, Wang L, Ren C, Zhu G, Li Z (2006) Sens Actuators B 114:1001CrossRefGoogle Scholar
  51. 51.
    Guo C, Song Y, Wei H, Li P, Wang L, Sun L, Sun Y, Li Z (2007) Anal Bioanal Chem 389:527CrossRefGoogle Scholar
  52. 52.
    Willner I, Katz E (2000) Angew Chem Int Ed 39:1180CrossRefGoogle Scholar
  53. 53.
    Xiao Y, Patolsky F, Katz E, Hainfeld J, Willner I (2003) Science 299:1877CrossRefGoogle Scholar
  54. 54.
    Lu WB, Liao F, Luo YL, Chang GH, Sun XP (2011) Electrochim Acta 56:2295CrossRefGoogle Scholar
  55. 55.
    Tian JQ, Liu S, Sun XP (2010) Langmuir 26:15112CrossRefGoogle Scholar
  56. 56.
    Tian JQ, Li HL, Lu WB, Luo YL, Wang L, Sun XP (2011) Analyst (accepted for publication)Google Scholar
  57. 57.
    Kelley SO, Barton JK, Jackson NM, Mcpherson LD, Potter AB, Spain EM, Allen MJ, Hill MG (1998) Langmuir 14:6781CrossRefGoogle Scholar
  58. 58.
    Herne TM, Tarlov MJ (1997) J Am Chem Soc 119:8916CrossRefGoogle Scholar
  59. 59.
    Yang M, Yau HCM, Chan HL (1998) Langmuir 14:6121CrossRefGoogle Scholar
  60. 60.
    Okahata Y, Matsunobu Y, Kunihara I, Masayuki M, Murakami A, Makino K (1992) J Am Chem Soc 114:8299CrossRefGoogle Scholar
  61. 61.
    Tarlov MJ, Newman JG (1992) Langmuir 8:1398CrossRefGoogle Scholar
  62. 62.
    Georgiadis R, Peterlinz KP, Peterson AW (2000) J Am Chem Soc 122:3166CrossRefGoogle Scholar
  63. 63.
    Wang Y, Yang F, Yang XR (2010) ACS Appl Mater Int 2:339CrossRefGoogle Scholar
  64. 64.
    Lu C, Yang H, Zhu C, Chen X, Chen G (2009) Angew Chem Int Ed 48:4785CrossRefGoogle Scholar
  65. 65.
    Li J, Liu C (2010) Eur J Inorg Chem 1244Google Scholar
  66. 66.
    Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Langmuir 24:10560CrossRefGoogle Scholar
  67. 67.
    Szabo T, Berkesi O, Forgo P, Josepovits K, Sanakis Y, Petridis D, Dekany I (2006) Chem Mater 18:2740CrossRefGoogle Scholar
  68. 68.
    Xu C, Wang X, Zhu JW, Yang XJ, Lu LD (2008) J Mater Chem 18:5625CrossRefGoogle Scholar
  69. 69.
    Herrera-Alonso M, Abdala AA, McAllister MJ, Aksay IA, Prudhomme RK (2007) Langmuir 23:10644CrossRefGoogle Scholar
  70. 70.
    Yang XJ, Makita YJ, Liu ZH, Ooi K (2003) Chem Mater 15:1228CrossRefGoogle Scholar
  71. 71.
    Yau HCM, Chan HL, Sui S, Yang M (2002) Thin Solid Film 413:218CrossRefGoogle Scholar
  72. 72.
    Zhang SX, Wang N, Niu YM, Sun CQ (2005) Sens Actuators B 109:367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Wenbo Lu
    • 1
  • Guohui Chang
    • 1
  • Yonglan Luo
    • 1
  • Fang Liao
    • 1
  • Xuping Sun
    • 1
  1. 1.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, School of Chemistry and Chemical IndustryChina West Normal UniversityNanchongChina

Personalised recommendations