Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5153–5159 | Cite as

Hydrothermal synthesis of silver nanoshells: formation and plasmon hybridization

  • B. Mondal
  • S. K. Saha
Article

Abstract

Silver nanoshells with varying diameters are synthesized using Polyacrylamide (PAM) in a controllable way by the hydrothermal process followed by calcinations to investigate the plasmon hybridization. At relatively lower hydrothermal temperature (T~ 415 K), an assembly of silver nanoparticles (NPs) along the PAM chain is formed exhibiting transverse (453 nm) and longitudinal (949 nm) surface plasmon resonance (SPR) peaks. With increasing TH (~510 K), this assembly of NPs disrupt into segments and create a homogeneous phase of PAM–silver composites, which upon cooling form globules due to agglomeration. During calcinations at 650 K, PAM is degraded into several gases (NH3, CO2, and water vapor) to form nanobubbles, which are trapped inside the globule and coalescence into a single bubble as a result; the molten state containing the NPs forms a spherical shell to minimize the surface energy. The absorption spectra are de-convoluted into three peaks, which are attributed to the hybridization between anti-bonding and bonding SPR modes of individual nanoshells.

Keywords

Surface Plasmon Resonance Surface Plasmon Resonance Peak Nanometric Dimension Plasmon Hybridization Dielectric Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

BM acknowledges CSIR, New Delhi, Govt. of India, for his fellowship and SKS acknowledges DST, New Delhi for financial support.

References

  1. 1.
    Wang H, Brandl DW, Norlander P, Halas NJ (2007) Acc Chem Res 40:53CrossRefGoogle Scholar
  2. 2.
    Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AG, Atwater HA (2001) Adv Mater 13:1501CrossRefGoogle Scholar
  3. 3.
    Barnesl WL, Dereux A, Ebbesen TW (2003) Nature 24:824CrossRefGoogle Scholar
  4. 4.
    Ozbay E (2006) Science 311:189CrossRefGoogle Scholar
  5. 5.
    Atay A, Song JH, Nurmikko AV (2004) Nano Lett 4:1627CrossRefGoogle Scholar
  6. 6.
    Koh AL, Bao K, Khan I, Smith WE, Kothleitner G, Nordlander P, Maier SA, McComb WD (2009) ACS Nano 3:3015CrossRefGoogle Scholar
  7. 7.
    Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Zou MK, Schatz GC (2005) J Phys Chem B 109:1079CrossRefGoogle Scholar
  8. 8.
    Prodan E, Nordlander P (2004) J Chem Phys 120:5444CrossRefGoogle Scholar
  9. 9.
    Wang H, Wu Y, Lassiter B, Nehl CL, Hafner JH, Nordlander P, Halas NJ (2006) Proc Natl Acad Sci USA 103:10856CrossRefGoogle Scholar
  10. 10.
    Funston A, Novo C, Davis TJ, Mulvaney P (2009) Nano Lett 9:1651CrossRefGoogle Scholar
  11. 11.
    Willingham B, Brandl DW, Nordlander P (2008) Appl Phys B 93:209CrossRefGoogle Scholar
  12. 12.
    Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nano Lett 6:827CrossRefGoogle Scholar
  13. 13.
    Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Nano Lett 8:1212CrossRefGoogle Scholar
  14. 14.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302:419CrossRefGoogle Scholar
  15. 15.
    Prodan E, Nordlander N, Halas NJ (2003) Nano Lett 3:543CrossRefGoogle Scholar
  16. 16.
    Prodan E, Nordlander P, Halas NJ (2003) Nano Lett 3:1411CrossRefGoogle Scholar
  17. 17.
    Yang Y, Xiong L, Shi J, Nogami M (2006) Nanotechnology 17:2670CrossRefGoogle Scholar
  18. 18.
    Chen C, Wang L, Li R, Jiang G, Yu H, Chen T (2007) J Mater Sci 42:3172. doi: 10.1007/s10853-007-1594-x CrossRefGoogle Scholar
  19. 19.
    Zhou L, Fu XF, Yu L, Zhang X, Yu XF, Hao ZH (2009) Appl Phys Lett 94:153102CrossRefGoogle Scholar
  20. 20.
    Rycenga M, McLellan JM, Xia Y (2008) Adv Mater 20:2416CrossRefGoogle Scholar
  21. 21.
    Jiang ZJ, Liu CY (2003) J Phys Chem B 107:12411CrossRefGoogle Scholar
  22. 22.
    Germain V, Li J, Ingert D, Wang ZL, Pileni MP (2003) J Phys Chem B 107:8718CrossRefGoogle Scholar
  23. 23.
    Nadagouda MN, Varma RS (2008) Cryst Growth Des 8:291CrossRefGoogle Scholar
  24. 24.
    Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y (2009) Annu Rev Phys Chem 60:167CrossRefGoogle Scholar
  25. 25.
    Zhang J, Fu Y, Lakowicz JR (2007) J Phys Chem C 111:1955CrossRefGoogle Scholar
  26. 26.
    Ling G, He J, Huang L (2004) J Mater Sci 39:2955. doi: 10.1023/B:JMSC.0000021490.52788.62 CrossRefGoogle Scholar
  27. 27.
    Chen M, Wang LY, Han JT, Zhang JY, Li ZY (2006) J Phys Chem B 110:11224CrossRefGoogle Scholar
  28. 28.
    Caulfield MJ, Qiao GG, Solomon DH (2002) Chem Rev 102:3067CrossRefGoogle Scholar
  29. 29.
    Mukherjee S, Mukherjee M (2006) J Phys Condens Matter 18:11233CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials ScienceIndian Association for the Cultivation of ScienceKolkataIndia

Personalised recommendations