Skip to main content
Log in

Effect of process parameters on size, shape, and distribution of Sb2O3 nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Antimony trioxide (Sb2O3) nanoparticles with particle sizes ranging from 2 to 12 nm, spherical in shape, and well-distributed were successfully synthesized by chemical reduction method. The nanoparticles were synthesized in the presence of hydrazine as a reduction agent in ethylene glycol through the reaction between antimony trichloride and sodium hydroxide. Effects of reaction temperature, reaction time, precursor concentration and boiling temperature on the particle size, shape, and distribution of the Sb2O3 nanoparticles were investigated. Morphology of the nanoparticles was examined by transmission electron microscope (TEM). It was revealed that the particle size increased when reaction temperature, reaction time and concentration of precursor were increased. Moreover, the mixture needed to be boiled prior to the addition of hydrazine as a reduction agent, in order to obtain an optimum reduction. X-ray diffraction (XRD) was employed to study the crystallinity and phase of the nanoparticles. The nanoparticles were determined as cubic phase of Sb2O3 (ICDD file no. 00-043-1071) by XRD. Interrelation between UV–vis absorption spectra of the nanoparticles and their particle size were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wang D, Zhou Y, Song C, Shao M (2009) J Cryst Growth 311:3948

    Article  CAS  Google Scholar 

  2. Ye CH, Wang GY, Kong MG, Zhang LD (2006) J Nanomater 2006:1

    Article  Google Scholar 

  3. Xie XL, Li RKY, Liu QX, Mai YW (2004) Polymer 45:2793

    Article  CAS  Google Scholar 

  4. Feng L, Wang J, Liu J, Wang B, Song S (2007) J Compos Mater 41:1487

    Article  Google Scholar 

  5. Laachachi A, Cochez M, Ferriol M, Leroy E, Lopez Cuesta JM, Oget N (2004) Polym Degrad Stab 85:641

    Article  CAS  Google Scholar 

  6. Duh B (2002) Polymer 43:3147

    Article  CAS  Google Scholar 

  7. Nalin M, Messaddeq Y, Ribeiro SJL, Poulain M, Briois V (2001) J Optoelectron Adv Mater 3:553

    CAS  Google Scholar 

  8. Sahoo NK, Apparao KVSR (1997) Appl Phys A 63:195

    Google Scholar 

  9. Ozawa K, Sakka Y, Amano M (1998) J Mater Res 13:830

    Article  CAS  Google Scholar 

  10. Dzimitrowicz DJ, Goodenough JB, Wiseman PJ (1982) Mater Res Bull 17:971

    Article  CAS  Google Scholar 

  11. Zhang ZL, Guo L, Wang WD (2001) J Mater Res 16:803

    Article  CAS  Google Scholar 

  12. Jha AK, Prasad K (2009) Biochem Eng J 43:303

    Article  CAS  Google Scholar 

  13. Chen XY, Huh HS, Lee SW (2008) J Solid State Chem 181:2127

    Article  CAS  Google Scholar 

  14. Liu YP, Zhang YH, Zhang MW, Zhang WH, Qian YT, Yang L, Wang CS, Chen ZW (1997) Mater Sci Eng B 49:42

    Article  Google Scholar 

  15. Zeng DW, Zhu BL, Xie CS, Song WL, Wang AH (2004) Mater Sci Eng A 366:332

    Article  Google Scholar 

  16. Zeng DW, Xie CS, Zhu BL, Song WL (2004) Mater Lett 58:312

    Article  CAS  Google Scholar 

  17. Xu CH, Shi SQ, Surya C, Woo CH (2007) J Mater Sci 42:9855. doi:https://doi.org/10.1007/s10853-007-1799-z

    Article  CAS  Google Scholar 

  18. Qiu KQ, Zhang RL (2006) Vacuum 80:1016

    Article  CAS  Google Scholar 

  19. Chin HS, Cheong KY, Abdul Razak K (2010) J Mater Sci 45:5993. doi:https://doi.org/10.1007/s10853-010-4849-x

    Article  CAS  Google Scholar 

  20. Wu SH, Chen DH (2003) J Colloid Interface Sci 259:282

    Article  CAS  Google Scholar 

  21. Balela MDL (2008) Dissertation, Universiti Sains Malaysia, Penang

  22. Lee YM, Qin GW, Lee CG, Koo BH, Moon KY, Shimada Y, Kitakami O (2007) Met Mater Int 13:207

    Article  CAS  Google Scholar 

  23. Kim KD, Kim HT (2003) Mater Lett 2003:3211

    Article  Google Scholar 

  24. Pattabi M, Saraswathi AB (2007) J New Mater Electrochem Syst 10:43

    CAS  Google Scholar 

  25. Yang M, Zhang Y, Pang G, Feng S (2007) Eur J Inorg Chem 2007:3841

    Article  Google Scholar 

  26. Segets D, Tomalino LM, Gradl J, Peukert W (2009) J Phys Chem C 113:11995

    Article  CAS  Google Scholar 

  27. Zhang G, Roy BK, Allard LF, Cho J (2008) J Am Ceram Soc 91:3875

    Article  CAS  Google Scholar 

  28. Chin HS, Cheong KY, Abdul Razak K (2010) J Nanoparticle Res. doi:https://doi.org/10.1007/s11051-010-0169-y

    Article  Google Scholar 

  29. Rautio J, Perämäki P, Honkamo J, Jantunen H (2009) Microchem J 91:272

    Article  CAS  Google Scholar 

  30. Chang PR, Yu J, Ma X (2009) Macromol Mater Eng 294:762

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (H.S.C) would like to thank USM RU-PRGS grant and USM fellowship for the scholarship and financial support on this project. Another author (K.Y.C) would like to acknowledge the financial support given by Short Term Grant of Universiti Sains Malaysia (6039038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan Yew Cheong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chin, H.S., Cheong, K.Y. & Abdul Razak, K. Effect of process parameters on size, shape, and distribution of Sb2O3 nanoparticles. J Mater Sci 46, 5129–5139 (2011). https://doi.org/10.1007/s10853-011-5444-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5444-5

Keywords

Navigation