Skip to main content
Log in

Processing of concentrated aqueous fluorapatite suspensions by slip casting

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to produce stable aqueous fluorapatite (FA) suspensions, its surface reactivity in an aqueous solution having two initial pH values with a concentration of ammonium polyacrylate (NH4PA) was investigated as a function of time. The rheological behaviour of concentrated aqueous FA slips stabilized with NH4PA was studied; besides, the effect of poly(vinyl)alcohol (PVA) addition on the relative viscosity of the suspensions was investigated. The influence of the slip rheology on the microstructure of the resultant green slip cast compacts and their sintering behaviour were determined. Upon the FA introduction in the aqueous solutions, an initial release of F anions located at the surface was found, which was not dependent on the pH and the presence of dispersant. The increase in the initial pH of the solution above 7 and/or the addition of NH4PA markedly reduced the Ca++/H+ exchange reaction rate. As a result, well-stabilized concentrated aqueous suspensions could be obtained at pH close to 9. The minimum viscosity of 40 vol.% slips at pH 8.9 occurred at 0.6 wt% of NH4PA added. The addition of 0.5 wt% PVA to a well-stabilized FA slip caused aggregation of particles by a depletion flocculation mechanism, thereby increasing the slip viscosity. The greater permeability of cakes produced from slips with high viscosity values (0.5 wt% PVA) increased the casting rate. The highest sintered densities were obtained for the compacts prepared from the slips without PVA, due to the denser particle packing achieved in the green bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Weiner S, Wagner HD (1998) Ann Rev Mater Sci 28:271

    Article  CAS  Google Scholar 

  2. Vallet-Regí M, González-Calbet JM (2004) Prog Solid State Chem 32:1

    Article  Google Scholar 

  3. Dorozhkin SV (2009) Materials 2:1975

    Article  CAS  Google Scholar 

  4. Suchanek W, Yoshimura M (1998) J Mater Res 13:94

    Article  CAS  Google Scholar 

  5. Hench LL (1991) J Am Ceram Soc 74(7):1487

    Article  CAS  Google Scholar 

  6. Kim H-W, Lee S-Y, Bae C-J, Noh Y-J, Kim H-E, Kim H-M, Ko JS (2003) Biomaterials 24:3277

    Article  CAS  Google Scholar 

  7. Kim H-W, Yoon B-H, Koh Y-H, Kim H-E (2006) J Am Ceram Soc 89(8):2466

    Article  CAS  Google Scholar 

  8. Chaari K, Bouaziz J, Bouzouita K (2005) J Colloid Interface Sci 285:469

    Article  CAS  Google Scholar 

  9. Cesarano J III, Aksay IA, Bleier A (1988) J Am Ceram Soc 71(4):250

    Article  CAS  Google Scholar 

  10. Cesarano J III, Aksay IA (1988) J Am Ceram Soc 71(12):1062

    Article  CAS  Google Scholar 

  11. Guldberg-Pedersen H, Bergström L (2000) Acta Mater 48:4563

    Article  CAS  Google Scholar 

  12. Zhang J-X, Jiang D-L, Tan S-H, Gui L-H, Ruan M-L (2001) J Am Ceram Soc 84(11):2537

    Article  CAS  Google Scholar 

  13. Khan AU, Briscoe BJ, Luckham Pf (2000) Colloids Surf A 161:243

    Article  CAS  Google Scholar 

  14. Gu Y, Meng G (1999) J Eur Ceram Soc 19:1961

    Article  CAS  Google Scholar 

  15. Hampton JHD, Savage B, Drew RAL (2005) J Am Ceram Soc 71(12):1040

    Article  Google Scholar 

  16. Bhatnagar VM (1971) Can J Chem 49:662

    Article  CAS  Google Scholar 

  17. Rodenas LG, Palacios JM, Apella MC, Morando PJ, Blesa MA (2005) J Colloid Interface Sci 290:145

    Article  Google Scholar 

  18. Chaïrat C, Schott J, Oelkers EH, Lartigue J-E, Harouiya N (2007) Geochim Cosmochim Acta 71:5901

    Article  Google Scholar 

  19. Chaïrat C, Oelkers EH, Schott J, Lartigue J-E (2007) Geochim Cosmochim Acta 71:5888

    Article  Google Scholar 

  20. Dorozhkin SV (1997) J Cryst Growth 182:133

    Article  CAS  Google Scholar 

  21. Berry EE, Baddiel CB (1967) Spectrochim Acta A 23:1781

    Article  CAS  Google Scholar 

  22. Albano MP, Garrido LB (1998) J Am Ceram Soc 81(4):837

    Article  CAS  Google Scholar 

  23. Albano MP, Garrido LB (2004) Colloids Surf A 248:1

    Article  CAS  Google Scholar 

  24. Liu D, Malgham SG (1996) Colloids Surf A 110:37

    Article  CAS  Google Scholar 

  25. Albano MP, Garrido LB, Garcia AB (2001) Colloids Surf A 181:69

    Article  CAS  Google Scholar 

  26. Tiller FM, Tsai C (1986) J Am Ceram Soc 69(12):882

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María P. Albano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albano, M.P., Garrido, L.B. Processing of concentrated aqueous fluorapatite suspensions by slip casting. J Mater Sci 46, 5117–5128 (2011). https://doi.org/10.1007/s10853-011-5443-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5443-6

Keywords

Navigation