Journal of Materials Science

, Volume 46, Issue 12, pp 4428–4433 | Cite as

Dislocation structures in a {\( \bar{1} \)104}/〈11\( \bar{2} \)0〉 low-angle tilt grain boundary of alumina (α-Al2O3)

  • E. Tochigi
  • N. Shibata
  • A. Nakamura
  • T. Yamamoto
  • Y. Ikuhara
IIB 2010


An alumina (α-Al2O3) bicrystal with a (\( \bar{1} \)104)/[11\( \bar{2} \)0] 2o low-angle tilt grain boundary was fabricated by diffusion bonding at 1500 °C in air, and the grain boundary was observed by transmission electron microscopy (TEM). High-resolution TEM observations revealed that the grain boundary consists of at least two kinds of dislocations. One is a perfect dislocation which has a Burgers vector of 1/3[\( \bar{1} \)2\( \bar{1} \)0]. The other is dissociated into two partial dislocations with a stacking fault on the (0001) plane, and each partial dislocation has a 1/6[\( \bar{1} \)101] edge component. It is suggested from structural considerations that the dissociated-dislocation pair originates from a b = 1/3[02\( \bar{2} \)1] perfect dislocation (i.e., 1/3[02\( \bar{2} \)1] → 1/6[02\( \bar{2} \)1] + 1/6[02\( \bar{2} \)1]). This dissociation produces a stacking fault in the anion sublattice. The stacking fault energy is estimated to be roughly 1.3 Jm−2 based on the elastic theory. The authors discuss the dislocation structures and the stacking fault formed on the (0001) plane in detail.


Burger Vector Dislocation Structure Boundary Plane Partial Dislocation Translation Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank S.D. Findlay for critically reading the manuscript. This study was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas “Nano Materials Science for Atomic-scale Modification” (no. 19053001) from the Ministry of Education, Culture, Sports and Technology (MEXT). E.T. was supported as a Japan Society for the Promotion of Science (JSPS) research fellow. N.S. acknowledges supports from PRESTO, Japan Science and Technology Agency, and the Grant-in-Aid for Young Scientists (A) (20686042) from MEXT.


  1. 1.
    Mitchell TE, Pletka BJ, Phillips DS, Heuer AH (1976) Philos Mag 34:441CrossRefGoogle Scholar
  2. 2.
    Bilde-Sørensen JB, Tholen AR, Gooch DJ, Groves GW (1976) Philos Mag 33:877CrossRefGoogle Scholar
  3. 3.
    Phillips DS, Mitchell TE, Heuer AH (1982) Philos Mag A 45:371CrossRefGoogle Scholar
  4. 4.
    Phillips DS, Pletka BJ, Heuer AH, Mitchell TE (1982) Acta Metall 30:491CrossRefGoogle Scholar
  5. 5.
    Cadoz J, Castaing J, Phillips DS, Heuer AH, Mitchell TE (1982) Acta Metall 30:2205CrossRefGoogle Scholar
  6. 6.
    Lagerlöf KPD, Mitchell TE, Heuer AH, Riviere JP, Cadoz J, Castaing J, Phillips DS (1984) Acta Metall 32:97CrossRefGoogle Scholar
  7. 7.
    Lagerlöf KPD, Heuer AH, Castaing J, Riviere JP, Mitchell TE (1994) J Am Ceram Soc 77:385CrossRefGoogle Scholar
  8. 8.
    Inkson BJ (2000) Acta Mater 48:1883CrossRefGoogle Scholar
  9. 9.
    Nakamura A, Yamamoto T, Ikuhara Y (2002) Acta Mater 50:101CrossRefGoogle Scholar
  10. 10.
    Ikuhara Y, Nishimura H, Nakamura A, Matsunaga K, Yamamoto T, Lagerlöf KPD (2003) J Am Ceram Soc 86:595CrossRefGoogle Scholar
  11. 11.
    Nakamura A, Matsunaga K, Yamamoto T, Ikuhara Y (2006) Philos Mag 86:4657CrossRefGoogle Scholar
  12. 12.
    Shibata N, Chisholm MF, Nakamura A, Pennycook SJ, Yamamoto T, Ikuhara Y (2007) Science 316:82CrossRefGoogle Scholar
  13. 13.
    Lartigue-Korinek S, Liagege S, Kisielowski C, Serra A (2008) Philos Mag 88:1569CrossRefGoogle Scholar
  14. 14.
    Tochigi E, Shibata N, Nakamura A, Yamamoto T, Ikuhara Y (2008) Acta Mater 56:2015CrossRefGoogle Scholar
  15. 15.
    Tochigi E, Shibata N, Nakamura A, Mizoguchi T, Yamamoto T, Ikuhara Y (2010) Acta Mater 58:208CrossRefGoogle Scholar
  16. 16.
    Heuer AH, Jia CL, Lagerlöf KPD (2010) Science 330:1227CrossRefGoogle Scholar
  17. 17.
    Choi S-Y, Buban JP, Nishi M, Kageyama H, Shibata N, Yamamoto T, Kang S-JL, Ikuhara Y (2006) J Mater Sci 41:2621. doi: 10.1007/s10853-006-7824-9 CrossRefGoogle Scholar
  18. 18.
    Igarashi M, Sato Y, Shibata N, Yamamoto T, Ikuhara Y (2006) J Mater Sci 41:5146. doi: 10.1007/s10853-006-0447-3 CrossRefGoogle Scholar
  19. 19.
    Read WT, Shockley W (1950) Phys Rev 78:275CrossRefGoogle Scholar
  20. 20.
    Frank FC (1951) Philos Mag 7th Ser 42:331Google Scholar
  21. 21.
    Lee WE, Lagerlof KPD (1985) J Electron Microsc Tech 2:247CrossRefGoogle Scholar
  22. 22.
    Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Krieger Publishing Company, MalabarGoogle Scholar
  23. 23.
    Chung DH, Simmons G (1968) J Appl Phys 39:5316CrossRefGoogle Scholar
  24. 24.
    Gieske JH, Barsch GR (1968) Phys Status Solidi 29:121CrossRefGoogle Scholar
  25. 25.
    Marinopoulos AG, Elsässer C (2001) Philos Mag Lett 81:329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Tochigi
    • 1
  • N. Shibata
    • 1
    • 2
  • A. Nakamura
    • 3
  • T. Yamamoto
    • 1
    • 4
  • Y. Ikuhara
    • 1
    • 4
    • 5
  1. 1.Institute of Engineering InnovationThe University of TokyoBunkyo-kuJapan
  2. 2.PRESTOSaitamaJapan
  3. 3.Department of Intelligent Materials EngineeringOsaka City UniversityOsakaJapan
  4. 4.Nanostructures Research LaboratoryJapan Fine Ceramics CenterAtsuta-ku NagoyaJapan
  5. 5.WPI-AIMR Research CenterTohoku UniversitySendaiJapan

Personalised recommendations