Skip to main content
Log in

Dislocation structures in a {\( \bar{1} \)104}/〈11\( \bar{2} \)0〉 low-angle tilt grain boundary of alumina (α-Al2O3)

  • IIB 2010
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An alumina (α-Al2O3) bicrystal with a (\( \bar{1} \)104)/[11\( \bar{2} \)0] 2o low-angle tilt grain boundary was fabricated by diffusion bonding at 1500 °C in air, and the grain boundary was observed by transmission electron microscopy (TEM). High-resolution TEM observations revealed that the grain boundary consists of at least two kinds of dislocations. One is a perfect dislocation which has a Burgers vector of 1/3[\( \bar{1} \)2\( \bar{1} \)0]. The other is dissociated into two partial dislocations with a stacking fault on the (0001) plane, and each partial dislocation has a 1/6[\( \bar{1} \)101] edge component. It is suggested from structural considerations that the dissociated-dislocation pair originates from a b = 1/3[02\( \bar{2} \)1] perfect dislocation (i.e., 1/3[02\( \bar{2} \)1] → 1/6[02\( \bar{2} \)1] + 1/6[02\( \bar{2} \)1]). This dissociation produces a stacking fault in the anion sublattice. The stacking fault energy is estimated to be roughly 1.3 Jm−2 based on the elastic theory. The authors discuss the dislocation structures and the stacking fault formed on the (0001) plane in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitchell TE, Pletka BJ, Phillips DS, Heuer AH (1976) Philos Mag 34:441

    Article  CAS  Google Scholar 

  2. Bilde-Sørensen JB, Tholen AR, Gooch DJ, Groves GW (1976) Philos Mag 33:877

    Article  Google Scholar 

  3. Phillips DS, Mitchell TE, Heuer AH (1982) Philos Mag A 45:371

    Article  CAS  Google Scholar 

  4. Phillips DS, Pletka BJ, Heuer AH, Mitchell TE (1982) Acta Metall 30:491

    Article  CAS  Google Scholar 

  5. Cadoz J, Castaing J, Phillips DS, Heuer AH, Mitchell TE (1982) Acta Metall 30:2205

    Article  CAS  Google Scholar 

  6. Lagerlöf KPD, Mitchell TE, Heuer AH, Riviere JP, Cadoz J, Castaing J, Phillips DS (1984) Acta Metall 32:97

    Article  Google Scholar 

  7. Lagerlöf KPD, Heuer AH, Castaing J, Riviere JP, Mitchell TE (1994) J Am Ceram Soc 77:385

    Article  Google Scholar 

  8. Inkson BJ (2000) Acta Mater 48:1883

    Article  CAS  Google Scholar 

  9. Nakamura A, Yamamoto T, Ikuhara Y (2002) Acta Mater 50:101

    Article  CAS  Google Scholar 

  10. Ikuhara Y, Nishimura H, Nakamura A, Matsunaga K, Yamamoto T, Lagerlöf KPD (2003) J Am Ceram Soc 86:595

    Article  CAS  Google Scholar 

  11. Nakamura A, Matsunaga K, Yamamoto T, Ikuhara Y (2006) Philos Mag 86:4657

    Article  CAS  Google Scholar 

  12. Shibata N, Chisholm MF, Nakamura A, Pennycook SJ, Yamamoto T, Ikuhara Y (2007) Science 316:82

    Article  CAS  Google Scholar 

  13. Lartigue-Korinek S, Liagege S, Kisielowski C, Serra A (2008) Philos Mag 88:1569

    Article  CAS  Google Scholar 

  14. Tochigi E, Shibata N, Nakamura A, Yamamoto T, Ikuhara Y (2008) Acta Mater 56:2015

    Article  CAS  Google Scholar 

  15. Tochigi E, Shibata N, Nakamura A, Mizoguchi T, Yamamoto T, Ikuhara Y (2010) Acta Mater 58:208

    Article  CAS  Google Scholar 

  16. Heuer AH, Jia CL, Lagerlöf KPD (2010) Science 330:1227

    Article  CAS  Google Scholar 

  17. Choi S-Y, Buban JP, Nishi M, Kageyama H, Shibata N, Yamamoto T, Kang S-JL, Ikuhara Y (2006) J Mater Sci 41:2621. doi:10.1007/s10853-006-7824-9

    Article  CAS  Google Scholar 

  18. Igarashi M, Sato Y, Shibata N, Yamamoto T, Ikuhara Y (2006) J Mater Sci 41:5146. doi:10.1007/s10853-006-0447-3

    Article  CAS  Google Scholar 

  19. Read WT, Shockley W (1950) Phys Rev 78:275

    Article  CAS  Google Scholar 

  20. Frank FC (1951) Philos Mag 7th Ser 42:331

    Google Scholar 

  21. Lee WE, Lagerlof KPD (1985) J Electron Microsc Tech 2:247

    Article  CAS  Google Scholar 

  22. Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Krieger Publishing Company, Malabar

    Google Scholar 

  23. Chung DH, Simmons G (1968) J Appl Phys 39:5316

    Article  CAS  Google Scholar 

  24. Gieske JH, Barsch GR (1968) Phys Status Solidi 29:121

    Article  CAS  Google Scholar 

  25. Marinopoulos AG, Elsässer C (2001) Philos Mag Lett 81:329

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S.D. Findlay for critically reading the manuscript. This study was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas “Nano Materials Science for Atomic-scale Modification” (no. 19053001) from the Ministry of Education, Culture, Sports and Technology (MEXT). E.T. was supported as a Japan Society for the Promotion of Science (JSPS) research fellow. N.S. acknowledges supports from PRESTO, Japan Science and Technology Agency, and the Grant-in-Aid for Young Scientists (A) (20686042) from MEXT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Ikuhara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tochigi, E., Shibata, N., Nakamura, A. et al. Dislocation structures in a {\( \bar{1} \)104}/〈11\( \bar{2} \)0〉 low-angle tilt grain boundary of alumina (α-Al2O3). J Mater Sci 46, 4428–4433 (2011). https://doi.org/10.1007/s10853-011-5430-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5430-y

Keywords

Navigation