Skip to main content
Log in

Preparation of high-surface-area activated carbon from Zizania latifolia leaves by one-step activation with K2CO3/rarefied air

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An activated carbon (AC) with high-porosity was prepared from Zizania latifolia leaves by a one-step method combining chemical and physical activation. K2CO3 was employed as a chemical reagent, and air as a physical agent. During the activation, several key parameters were discussed, including the effects of activation temperature, K2CO3 impregnation ratio, amount of introduced air on the surface area and pore volumes evolution of the ACs derived from the Zizania latifolia leaves. The synergistic effect between the chemical agent and the physical agent was also investigated. Under optimal activation conditions, the as-synthesized AC attained a maximum surface area up to 2481 m2/g, with 1.21 cm3/g pore volume, and it had a micro/meso porosity developed by the combining activation. The crystal sizes of the as-synthesized AC along the a- and c-axes were about 5 nm and 1–2 nm, respectively. The average thickness of the crystallites is 3–4 layers with about 0.37 nm interlayer spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Azargohar R, Dalai AK (2008) Microporous Mesoporous Mater 110:413

    Article  CAS  Google Scholar 

  2. Ismadji S, Bhatia SK (2001) Carbon 39:1237

    Article  CAS  Google Scholar 

  3. Srinivasakannan C, Batar MZA (2004) Biomass Bioenergy 27:89

    Article  CAS  Google Scholar 

  4. Wu FC, Tseng RL, Juang RS (2005) Sep Purif Technol 47:10

    Article  CAS  Google Scholar 

  5. Wu FC, Tseng RL (2006) J Colloid Interface Sci 294:21

    Article  CAS  Google Scholar 

  6. JY Gu, KX Li, Wang J, He HW (2010) Microporous Mesoporous Mater 131:393

    Article  Google Scholar 

  7. Barrientos-Ramírez S, Oca-Ramírez GM, Sepúlveda-Escribano A, Pastor-Blas MM, González-Montiel A, Rodríguez-Reinoso F (2010) Catal Today 150:42

    Article  Google Scholar 

  8. Bueres RF, Asedegbega-Nieto E, Díaz E, Ordóñez S, Díez FV (2010) Catal Today 150:16

    Article  CAS  Google Scholar 

  9. Zhang T, Walter Walawender P, Fan LT, Fan M, Daugaard D, Brown RC (2004) Chem Eng J 105:53

    Article  CAS  Google Scholar 

  10. Hayashi J, Horikawa T, Muroyama K, Gomes VG (2002) Microporous Mesoporous Mater 55:63

    Article  CAS  Google Scholar 

  11. Guo Y, David A (2007) Microporous Mesoporous Mater 100:12

    Article  CAS  Google Scholar 

  12. Adinata D, Ashri WM, Daud W, Aroua MK (2007) Bioresour Technol 98:145

    Article  CAS  Google Scholar 

  13. Rajgopal S, Karthikeyan T, Prakashkumar BG, Miranda LS (2006) Chem Eng J 116:211

    Article  CAS  Google Scholar 

  14. Sentorun-Shalaby Ç, Uçak-Astarlıoglu MG, Artok L, Sarıcı Ç (2006) Microporous Mesoporous Mater 88:126

    Article  CAS  Google Scholar 

  15. Paraskeva P, Kalderis D, Diamadopoulos E (2008) J Chem Technol Biotechnol 83:581

    Article  CAS  Google Scholar 

  16. Dias JM, Alvim-Ferraz MCM, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M (2007) J Environ Manag 85:833

    Article  CAS  Google Scholar 

  17. El-Hendawy AA, Samra SE, Girgis BS (2001) Colloids Surf A 180:209

    Article  CAS  Google Scholar 

  18. Moreno-Castilla C, Carrosco-Marin F, Victoria-López-Ramon M, Alvarez-Merino MA (2001) Carbon 39:1415

    Article  CAS  Google Scholar 

  19. Ichcho S, Khouya E, Fakhi S, Ezzine M, Hannache H, Pallier R, Naslain R (2005) J Hazard Mater 118:45

    Article  CAS  Google Scholar 

  20. Okada K, Yamamoto N, Kameshima Y, Yasumori A (2003) J Colloid Interface Sci 262:179

    Article  CAS  Google Scholar 

  21. Guo J, Lu AC (2003) Mater Chem Phys 80:114

    Article  CAS  Google Scholar 

  22. Lu AC, Yang T (2004) J Colloid Interface Sci 274:594

    Article  Google Scholar 

  23. Lillo-Rodenas MA, Juan-Juan J, Cazorla-Amoros D, Linares-Solano A (2004) Carbon 42:1371

    Article  CAS  Google Scholar 

  24. Raymundo-Pinero E, Azais P, Cacciaguerra T, Cazorla-Amoros D, Linares-Solano A, Beguin F (2005) Carbon 43:786

    Article  CAS  Google Scholar 

  25. Tsai WT, Chang CY, Lee SL (1998) Bioresour Technol 64:211

    Article  CAS  Google Scholar 

  26. Karim MM, Das AK, Lee SH (2006) Anal Chim Acta 576:37

    Article  CAS  Google Scholar 

  27. Gan˜an J, Gonza′lez-Garcı′a CM, Gonza′lez JF, Sabio E, Macı′as-Garcı′a A, Dı′az-Dı′ez MA (2004) Appl Surf Sci 238:347

    Article  Google Scholar 

  28. Bansode RR, Losso JN, Marshall WE, Rao RM, Portier RJ (2003) Bioresour Technol 90:175

    Article  CAS  Google Scholar 

  29. Walker PL Jr, Almagro A (1995) Carbon 33:239

    Article  CAS  Google Scholar 

  30. Gergova K, Petrov N, Butuzova L, Minkova V, Isaeva L (1993) J Chem Technol Biotechnol 58:321

    Article  Google Scholar 

  31. Yorgun S, Vurala N, Demirala H (2009) Microporous Mesoporous Mater 122:189

    Article  CAS  Google Scholar 

  32. Olivares-Marín M, Fernández-González C, Macías-Garcia A, Gómez-Serrano V (2006) Appl Surf Sci 252:5980

    Article  Google Scholar 

  33. Williams PT, Reed AR (2006) Biomass Bioenergy 30:144

    Article  CAS  Google Scholar 

  34. Cuesta A, Mart′ınez-Alonso A, Tasco′n JMD, Bradley RH (1997) Carbon 35:967

    Article  CAS  Google Scholar 

  35. Blanco Lo′pez MC, Mart′ınez-Alonso A, Tasco′n JMD (2000) Microporous Mesoporous Mater 34:171

    Article  Google Scholar 

  36. Ishii C, Suzuki T, Shindo N, Kaneko K (1997) J Porous Mater 41:81

    Google Scholar 

  37. Kumar K, Saxena RK, Kothari R, Suri DK, Kaushik NK, Bohra JN (1997) Carbon 351:842

    Google Scholar 

  38. Carrott PJM, Nabais JMV, Ribeiro Carrott MML, Pajares JA (2001) Carbon 39:1543

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to the financial support of China-Australia Cooperation Research Program (2010DFA52550CB601200), National Natural Science Foundation of China (50401005), and Shanghai Pujiang Program (06PJ14050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, D.C., Liu, Q.L., Zhang, W. et al. Preparation of high-surface-area activated carbon from Zizania latifolia leaves by one-step activation with K2CO3/rarefied air. J Mater Sci 46, 5064–5070 (2011). https://doi.org/10.1007/s10853-011-5429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5429-4

Keywords

Navigation