Skip to main content
Log in

Two-stage crystallization kinetics equation and nonisothermal crystallization analyses for PTEG and filled PTEG

  • Letter
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel modified Avrami model considering both primary and secondary crystallization has been presented to extract the kinetic behavior of these two crystallization stages in nonisothermal crystallization process of polymers. Nonisothermal crystallization kinetics of poly(trimethylene terephthalate)–poly(ethylene glycol) segmented copolyesters (PTEG) has been investigated by differential scanning calorimetry. The crystallization rate constants and Avrami exponents at various cooling rates were obtained from the analyses for neat PTEG and multiwalled carbon nanotube (MWNT) filled PTEG. Secondary crystallization displays a lower-dimensional crystal growth compared with primary crystallization and the results of kinetics analyses are consistent with morphology study. The MWNTs introduced into PTEG matrix take the role of effective nucleating agents during composites crystallization and can expedite the process of crystallization of the matrix by providing more nucleation sites to the crystallizing phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Lorenzo MLD, Silvestre C (1999) Prog Polym Sci 24:917

    Article  Google Scholar 

  2. Piorkowska E, Galeski A, Haudin JM (2006) Prog Polym Sci 31:549

    Article  CAS  Google Scholar 

  3. Avrami M (1941) J Chem Phys 9:177

    Article  CAS  Google Scholar 

  4. Mandelkern L, Quinn FA, Flory PI (1954) J Appl Phys 25:830

    Article  CAS  Google Scholar 

  5. Verhoyen O, Dupret F, Legras R (1998) Polym Eng Sci 38:1594

    Article  CAS  Google Scholar 

  6. Jeziorny (1978) Polymer 19:1142

    Article  CAS  Google Scholar 

  7. Ozawa T (1971) Polymer 12:150

    Article  CAS  Google Scholar 

  8. Ziabicki A, Sajkiewicz A (1998) Colloid Polym Sci 276:680

    Article  CAS  Google Scholar 

  9. Liu T, Mo Z, Wang S, Zhang H (1997) Polym Eng Sci 37:568

    Article  CAS  Google Scholar 

  10. Kong XH, Yang XN, Zhou E, Ma D (2000) Eur Polym J 36:1085

    Article  CAS  Google Scholar 

  11. Gan Z, Zhang J, Jiang B (1997) J Appl Polym Sci 63:1763

    Article  Google Scholar 

  12. Cebe P, Hong SD (1986) Polymer 27:1183

    Article  CAS  Google Scholar 

  13. Yao C, Yang G (2010) Polymer 51:1516

    Article  CAS  Google Scholar 

  14. Heschmeyer C (2000) Int Fiber J 4:66

    Google Scholar 

  15. Xu Y, Ye SR, Bian J, Qian JW (2004) J Mater Sci 39:5551. doi:10.1023/B:JMSC.0000039285.56017.c6

    Article  CAS  Google Scholar 

  16. Xu Y, Ye SR, Bian J, Qian JW (2005) J Mater Sci 40:2039. doi:10.1007/s10853-005-1228-0

    Article  CAS  Google Scholar 

  17. Jia HB, Xu Y, Ye SR, Bian J, Qian JW (2006) J Mater Sci 41:4970. doi:10.1007/s10853-006-0136-2

    Article  CAS  Google Scholar 

  18. Xu Y, Jia HB, Ye SR, Huang J (2007) J Mater Sci 42:8381. doi:10.1007/s10853-007-1937-7

    Article  CAS  Google Scholar 

  19. Bhattacharyya AR, Sreekumar TV, Tao L, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Polymer 44:2373

    Article  CAS  Google Scholar 

  20. Velisaris CN, Seferis JC (1986) Polym Eng Sci 26:1574

    Article  CAS  Google Scholar 

  21. Wunderlich B (1976) Macromolecular physics, vol 2. Academic Press, New York

    Google Scholar 

  22. Wang ZG, Hsia BS, Sauer BB, Kampert WG (1999) Polymer 40:4615

    Article  CAS  Google Scholar 

  23. Zachmnn HG (1995) Nucl Instrum Methods Phys Res B 97:209

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by a grant of The Hong Kong Polytechnic University (934K) and a grant from The Doctoral Fund of Ministry of Education of China (No. 200802881030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Shang, S., Huang, J. et al. Two-stage crystallization kinetics equation and nonisothermal crystallization analyses for PTEG and filled PTEG. J Mater Sci 46, 4085–4091 (2011). https://doi.org/10.1007/s10853-011-5410-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5410-2

Keywords

Navigation