Advertisement

Journal of Materials Science

, Volume 46, Issue 14, pp 4826–4831 | Cite as

Diverse effects of microwave heating on anatase crystallization in ionothermal synthesis of nanostructured TiO2

  • Yen Hui Liu
  • Po-I Liu
  • Li-Ching Chung
  • Hsin Shao
  • Meng-Shun Huang
  • Ren-Yang Horng
  • Shuh Woei Yu
  • Arnold Chang-Mou Yang
  • Min-Chao Chang
Article

Abstract

This article examines anatase crystallization in the ionothermal synthesis [sol gel method in the presence of ionic liquid (IL)] of nanostructured TiO2 under microwave (MW) irradiation. MW heating can lead to rapid temperature increase of chemical reactions. In this study, we found that rapid temperature increasing effects on anatase crystallization were diverse and dependent on initial water concentration, MW irradiation time, and IL concentration. The results indicated that higher anatase crystallinity was obtained at high water amount irrespective of IL concentration. However, at lower water amounts, higher anatase crystallinity occurred only when MW heating was applied after the mixtures reacted for certain duration, especially at lower initial temperature and at a specific IL concentration. Different MW heating effects on the hydrolysis–condensation reaction and the post-treatment stage under MW/IL conditions can explain this diversity. Heating characteristics of IL/water mixtures under MW irradiation were also discussed.

Keywords

TiO2 Ionic Liquid Nanostructured TiO2 Anatase Crystallinity Ionic Liquid Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Leadbeater NE, Torenius HM, Tye H (2004) Comb Chem High Throughput Screen 7:511Google Scholar
  2. 2.
    Bilecka I, Niederberger M (2010) Nanoscale 2:1358CrossRefGoogle Scholar
  3. 3.
    Harta JN, Cervinia R, Chenga YB, Simona GP, Spiccia L (2004) Sol Energ Mat Sol C 84:135CrossRefGoogle Scholar
  4. 4.
    Periyat P, Leyland ND, McCormack E, Colreavy J, Corrc D, Pillai SC (2010) J Mater Chem 20:3650CrossRefGoogle Scholar
  5. 5.
    Komarneni S, Rajha RK, Katsuki H (1999) Mater Chem Phys 61:50CrossRefGoogle Scholar
  6. 6.
    Ma Z, Yu J, Dai S (2010) Adv Mater 22:261CrossRefGoogle Scholar
  7. 7.
    Yoo K, Choi H, Dionysiou DD (2004) Chem Commun 2000Google Scholar
  8. 8.
    Taubert A (2005) Acta Chim Slov 52:183Google Scholar
  9. 9.
    Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988CrossRefGoogle Scholar
  10. 10.
    Zhou Y (2005) Curr Nanosci 1:35CrossRefGoogle Scholar
  11. 11.
    Taubert A, Li Z (2007) Dalton Trans 7:723CrossRefGoogle Scholar
  12. 12.
    Li Z, Jia Z, Luan Y, Mud T (2008) Curr Opin Solid State Mater Sci 12:1CrossRefGoogle Scholar
  13. 13.
    Hoffmann J, Nüchter M, Ondruschk B, Wasserscheid P (2003) Green Chem 5:296CrossRefGoogle Scholar
  14. 14.
    Martínez-Palou R (2010) Mol Divers 14:3CrossRefGoogle Scholar
  15. 15.
    Morris RE (2008) Angew Chem Int Ed 47:442CrossRefGoogle Scholar
  16. 16.
    Ding K, Miao Z, Liu Z, Zhang Z, Han B, An G, Miao S, Xie Y (2007) J Am Chem Soc 129:6362CrossRefGoogle Scholar
  17. 17.
    Dong W, Li M, Liu C, Lin F, Liu Z (2008) J Colloid Interface Sci 319:115CrossRefGoogle Scholar
  18. 18.
    Liu YH, Chang MC, Shao H, Huang MS, Yang AC (2010) J Mater Sci 45:369. doi: 10.1007/s10853-009-3945-2 CrossRefGoogle Scholar
  19. 19.
    Dallinger D, Kappe CO (2007) Chem Rev 107:2563CrossRefGoogle Scholar
  20. 20.
    Liu W, Zhao T, Zhang Y, Wang H, Yu M (2006) J Solut Chem 35:1337CrossRefGoogle Scholar
  21. 21.
    Vila J, Gines P, Rilo E, Cabeza O, Varela LM (2006) Fluid Phase Equilib 247:32CrossRefGoogle Scholar
  22. 22.
    Jarosik A, Krajewski SR, Lewandowski A, Radzimski P (2006) J Mol Liq 123:43CrossRefGoogle Scholar
  23. 23.
    Yu J, Wang G, Chemg B, Zhou M (2007) Appl Catal B Environ 69:171CrossRefGoogle Scholar
  24. 24.
    Pouilleau J, Devilliers D, Groult H (1997) J Mater Res 32:5645Google Scholar
  25. 25.
    Liu YH, Lin CW, Chang MC, Shao H, Yang ACM (2008) J Mater Sci 43:5005. doi: 10.1007/s10853-008-2740-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yen Hui Liu
    • 2
  • Po-I Liu
    • 1
  • Li-Ching Chung
    • 1
  • Hsin Shao
    • 1
  • Meng-Shun Huang
    • 1
  • Ren-Yang Horng
    • 1
  • Shuh Woei Yu
    • 3
  • Arnold Chang-Mou Yang
    • 2
  • Min-Chao Chang
    • 1
  1. 1.Green Energy and Environment Research LaboratoriesIndustrial Technology Research Institute (ITRI)HsinchuTaiwan
  2. 2.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan
  3. 3.The Graduate Institute of Environmental EngineeringNational Central UniversityJhongli CityTaiwan

Personalised recommendations