Journal of Materials Science

, Volume 46, Issue 14, pp 4812–4819 | Cite as

Alumina microtubes prepared via template-directed pulsed chemical vapor deposition (pulsed CVD)

  • Amit K. Roy
  • Stefan Knohl
  • Werner A. Goedel


Bundles of alumina microtubes were prepared by depositing alumina onto bundles of “endless” carbon fibers via pulsed chemical vapor deposition and subsequent removal of the fibers. Thin alumina films were deposited onto “endless” carbon fibers at 77 °C by gas phase exposures to sequential pulses of trimethylaluminum and water vapor, respectively. The carbon fibers were selectively removed using thermal oxidation in air at temperatures exceeding 550 °C. The length of the tubes was primarily limited by the dimension of the used furnace. The longest tubes thus had a length of 30 cm. Scanning electron microscopic (SEM) images of the microtubes revealed that each individual tube was separated from its neighbors and that the tubes had an almost uniform wall thickness. SEM and transmission electron microscopic (TEM) images indicate that the inner side of the wall has the same morphology as the fiber template. As deposited, the alumina films have a predominantly amorphous structure; this is transformed into a polycrystalline structure during thermal oxidation. At low thermal oxidation temperatures, such as 550 °C, the alumina microtubes still comprise a substantial fraction of amorphous structure, at higher oxidation temperatures, 900 °C or above, a dominating polycrystalline structure (with bigger grains) is formed. This transformation gives rise to grain boundaries. These grain boundaries might facilitate oxygen diffusion and thus oxidative removal of the fiber templates.


Carbon Fiber High Resolution Transmission Electron Microscopic Thermal Oxidation Atomic Layer Deposition Coated Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Harry Rose, Micromanufacturing Technology, Chemnitz University of Technology, for designing the control software of the ALD reactor, Frank Diener and Frank Sternkopf from the metal-workshop, Chemnitz University of Technology, for building components of ALD reactor. We are thankful to Steffen Schulze from Solid Surfaces Analysis Group, Chemnitz University of Technology, for TEM analysis and to Thomas Mäder, Institute of Material Science and Engineering, for SEM images.


  1. 1.
    Avedisian T, Raj R (1995) US Patent 5451260, 1995Google Scholar
  2. 2.
    Hausmann D, Becker J, Wang S, Gordon RG (2002) Science 298:402CrossRefGoogle Scholar
  3. 3.
    Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M (2002) Electrochemistry 70:418Google Scholar
  4. 4.
    Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niihara K, Yanagida S (2005) Phys Chem Chem Phys 7:4157CrossRefGoogle Scholar
  5. 5.
    Varghese OK, Gong D, Paulose M, Ong KG, Grimes CA (2003) Sens Actuators B 93:338CrossRefGoogle Scholar
  6. 6.
    Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Adv Mater 15:624CrossRefGoogle Scholar
  7. 7.
    Fan R, Karnik R, Yue M, Li D, Majumdar A, Yang P (2005) Nano Lett 5:1633CrossRefGoogle Scholar
  8. 8.
    Lee SB, Mitchell DT, Trofin L, Nevanen TK, Söderlund H, Martin CR (2002) Science 296:2198CrossRefGoogle Scholar
  9. 9.
    Martin CR, Kohli P (2003) Nat Rev Drug Discov 2:29CrossRefGoogle Scholar
  10. 10.
    Spahr ME, Bitterli P, Nesper R, Müller M, Krumeich F, Nissen HU (1998) Angew Chem Int Ed 37:1263CrossRefGoogle Scholar
  11. 11.
    Niederberger M, Muhr H-J, Krumeich F, Bieri F, Günther D, Nesper R (2000) Chem Mater 12:1995CrossRefGoogle Scholar
  12. 12.
    Iijima S, Ichihashi T (1993) Nature 363:603CrossRefGoogle Scholar
  13. 13.
    Bethune DS, Kiang CH, de Varies MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Nature 363:605CrossRefGoogle Scholar
  14. 14.
    Schmidt OG, Eberl K (2001) Nature 410:168CrossRefGoogle Scholar
  15. 15.
    Bae C, Yoo H, Kim S, Lee K, Kim J, Sung MM, Shin H (2008) Chem Mater 20:756CrossRefGoogle Scholar
  16. 16.
    Caruso RA, Schattka JH, Greiner A (2001) Adv Mater 13:1577CrossRefGoogle Scholar
  17. 17.
    Bognitzki M, Hou HQ, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A (2000) Adv Mater 12:637CrossRefGoogle Scholar
  18. 18.
    Peng Q, Sun XY, Spagnola JC, Hyde GK, Spontak RJ, Parsons GN (2007) Nano Lett 7:719CrossRefGoogle Scholar
  19. 19.
    Roy AK, Baumann W, König I, Baumann G, Schulze S, Hietschold M, Mäder T, Nestler DJ, Wielage B, Goedel WA (2010) Anal Bioanal Chem 396:1913CrossRefGoogle Scholar
  20. 20.
    Roy AK, Baumann W, Schulze S, Hietschold M, Mäder T, Nestler DJ, Wielage B, Goedel WA (2011) J Am Cer Soc (published online 18 Feb 2011)Google Scholar
  21. 21.
    Bai Y-J, Wang C-G, Lun N, Wang YX, Yu M-J, Zhu B (2006) Carbon 44:1773CrossRefGoogle Scholar
  22. 22.
    Kisker DW, Stevenson DA, Miller JN, Stringfellow GB (1982) J de Phys 43:C5Google Scholar
  23. 23.
    Kisker DW, Stevenson DA (1983) J Electron Mater 12:459CrossRefGoogle Scholar
  24. 24.
    Puurunen RL (2003) Chem Vap Depos 9:327CrossRefGoogle Scholar
  25. 25.
    Bamford CH, Levi DL, Newitt DM (1946) J Chem Soc 468Google Scholar
  26. 26.
    Landolt H, Börnstein R, Eucken A (1960) Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik 6th ed, vol 2. Springer, Berlin, p 61Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Physical Chemistry, Institute of ChemistryChemnitz University of TechnologyChemnitzGermany

Personalised recommendations