Skip to main content

Advertisement

Log in

Preparation and structural investigation of nanostructured oxide dispersed strengthened steels

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Although capability of steels has been improved in the past by thermomechanical treatment, utilization of powder metallurgy provides more controlled microstructure, a homogeneous dispersion of nanosized oxide particles in the metal matrix and tailored properties in terms of strength and radiation resistance. This article is summarizing recent results on preparation, structural, and mechanical investigation of oxide dispersed strengthened steel (ODS). Two commercial steel powders, austenitic 17Cr12Ni2.5Mo2.3Si0.1C and martensitic Fe16Cr2Ni0.2C powders have been used as starting materials. Nanosized yttria dispersed martensitic and austenitic sintered steel samples have been realized by powder metallurgical methods. An efficient dispersion of nano-oxides in ODS steels was achieved by employing high efficient attrition milling. A combined wet and dry milling process of fine ceramic and steel particles is proposed. Spark Plasma Sintering (SPS) was applied to realize nanostructured steel compacts. Grains with 100 nm mean size have been observed by SEM in sintered austenitic ODS. In comparison, the sintered martensitic dry milled and martensitic dry and combined milled ODS microstructure consisted of grain size with 100–300 nm in each case. A brittle behavior is shown in all of the cases. The martensitic ODS is two times harder than the austenitic ODS. The bending strength high as 1806.7 MPa was found for the martensitic ODS, whereas 1210.8 MPa was determined for the austenitic ODS. The combined milling assured higher strength and hardness compared to dry milling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ukai S, Nishida T, Okada H, Okuda T, Fujiwara M, Asabe K (1997) J Nucl Sci Technol 34:256

    Article  CAS  Google Scholar 

  2. Ukai S, Yoshitake T, Mizuta S, Matsudaira Y, Hagi S, Kobayashi T (1999) J Nucl Sci Technol 36:710

    Article  CAS  Google Scholar 

  3. Alamo A, Decours J, Pigoury M, Foucher C (1990) Structural applications of mechanical alloying. ASM International, Materials Park

    Google Scholar 

  4. Alamo A, Regle H, Pons G, Bechade LL (1992) Mater Sci Forum 88–90:183

    Article  Google Scholar 

  5. Mukhopadhyay DK, Froes FH, Gelles DS (1998) J Nucl Mater 258–263:1209

    Article  Google Scholar 

  6. Miller MK, Kenik EA, Russell KF, Heatherly L, Hoelzer DT, Maziasz PJ (2003) Mater Sci Eng A 353:140

    Article  Google Scholar 

  7. Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, Asabe K, Nishida T, Fujiwara M (1993) J Nucl Mater 204:65

    Article  CAS  Google Scholar 

  8. Ukai S, Harada M, Okada H, Inoue M, Nomura S, Shikakura S, Nishida T, Fujiwara M, Asabe K (1993) J Nucl Mater 204:74

    Article  CAS  Google Scholar 

  9. Fischer JL (1978) US Patent 4,075,010, 21 Feb 1978

  10. Yun T, Guangzu L, Bingquan S (2000) 6th Japan–China symposium on materials for advance energy systems and fission and fusion engineering, RIAM, Kyushu University, 4–6 Dec 2000

  11. Kimura A, Sawai T, Shiba K, Hishinuma A, Jitsukawa S, Ukai S, Kohyama A (2003) Nucl Fusion 43:1246

    Article  CAS  Google Scholar 

  12. Kimura A, Cho HS, Lee JS, Kasada R, Ukai S, Fujiwara M (2004) In: Proceedings of the 2004 international congress on advances in nuclear power plants, p 2070

  13. Kimura A (2005) Mater Trans 46:394

    Article  CAS  Google Scholar 

  14. Huet JJ (1967) Powder Metall 10:208

    Article  CAS  Google Scholar 

  15. Huet JJ, Leroy V (1974) Nucl Technol 24:216

    Article  CAS  Google Scholar 

  16. Borgioli F, Galvanetto E, Bacci T et al (2002) Surf Coat Technol 149:192

    Article  CAS  Google Scholar 

  17. Sandberg O, Jönson L (2003) Adv Mater Process 12:37

    Google Scholar 

  18. Lindskog P (2004) Powder Metall 47:6

    Article  CAS  Google Scholar 

  19. Koszor O, Horváth A, Weber F, Balázsi K, Gillemot F, Horvath M, Fényi B, Balázsi C (2009) Key Eng Mater 409:237

    Article  CAS  Google Scholar 

  20. Sakasegawa H et al (2008) J Alloys Compd 452:2

    Article  CAS  Google Scholar 

  21. Okuda T, Nomura S et al. (1989) Proceedings on Symposium. Sponsored by the TMS Powder Metallurgy Committee, Indiana, p 195

  22. Syed AA, Denoirjean A, Denoirjean P, Labbe JC, Fauchais P (2004) In: Thermal Spray 2004, Advances in Technology and Application, Proceedings of the international thermal spray conference, Osaka, Japan, pp 100–105, 10–12 May 2004

  23. Palm M, Preuhs J, Sauthoff G, Mater J (2003) Process Technol 136:114

    Article  CAS  Google Scholar 

  24. Groza JR, Ribaud SH, Yamazaki K (1992) J Mater Res 7:2643

    Article  CAS  Google Scholar 

  25. Groza JR, Curtis JD, Kramer M (2000) J Am Ceram Soc 83:1281

    Article  CAS  Google Scholar 

  26. Gang JL, Grosdidier T, Bozzolo N, Launois S (2007) Intermetallics 15(2):108

    Article  Google Scholar 

  27. Zhang L, Ukai S, Hoshino T, Hayashi S, Qu X (2009) Acta Mater 57/12:3671

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by EFDA, FEMAS and TAMOP 4.2.2. - 08/1-2008-0016. Thanks for XRD and SEM measurements to Dr. Z.E. Horváth, Dr. A.L. Tóth and L. Illés.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cs. Balázsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balázsi, C., Gillemot, F., Horváth, M. et al. Preparation and structural investigation of nanostructured oxide dispersed strengthened steels. J Mater Sci 46, 4598–4605 (2011). https://doi.org/10.1007/s10853-011-5359-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5359-1

Keywords

Navigation