Journal of Materials Science

, Volume 46, Issue 13, pp 4562–4567 | Cite as

Phase transition and mechanical properties of constraint-aged Ni–Mn–Ga–Ti magnetic shape memory alloy

  • G. F. Dong
  • Z. Y. Gao
  • X. L. Zhang
  • W. Cai
  • J. H. Sui


Ni–Mn–Ga Heusler-type ferromagnetic shape memory alloys are attractive materials for micro-actuator, but the relatively poor ductility and low strength of Ni–Mn–Ga alloys have triggered a great deal of interest. In this study, we attempt to introduce some ductile second phase in the alloy by partially substituting Ti for Ga and constraint aging treatment. The results show that the martensitic transformation temperature first decreases and then increases slightly with the increasing of constraint-aging temperature, which can be attributed to the decrease of Ni content in the matrix and strengthening effect of the second particles. It is found that the amount of the Ni-rich precipitates by constraint-aged samples is more and the size of the second phase particle is smaller than that of the free-aged samples. The compressive stress and ductility can be significantly improved by the constraint-aging treatment, and the maximum compressive stress for constraint-aging alloy is about 1400 MPa, which is the highest value up to date compared with the 400 MPa in solution-treated Ni–Mn–Ga–Ti alloy and about 900 MPa in Ni–Mn–Ga–Ti alloy free-aged at 1073 K for 3 h. Scanning electron microscopy observations of fracture surfaces confirm that the Ni-rich second phase play a key role in improving the compression stress and ductility of Ni–Mn–Ga–Ti alloy.


Compressive Strength Shape Memory Alloy Aging Temperature Ni3Ti Martensitic Transformation Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is supported by Postdoctoral Science Foundation of China (Grant No. 20100481218) and Natural Science Foundation of China (Grant Nos. 50601006, 20973028).


  1. 1.
    Ullakko K, Huang JK, Kanter C, Kokorin VV, O’Handley RC (1996) Appl Phys Lett 69:1966CrossRefGoogle Scholar
  2. 2.
    Wuttig M, Liu L, Tsuchiya K, James RD (2000) J Appl Phys 87(9):4707CrossRefGoogle Scholar
  3. 3.
    O’Handley RC, Murray SJ, Marioni M, Nembach H, Allen SM (1998) J Appl Phys 83(6):3263CrossRefGoogle Scholar
  4. 4.
    Mullner P, Chernenko VA, Kostorz G (2004) J Appl Phys 95:1531CrossRefGoogle Scholar
  5. 5.
    Hosoda H, Wakashima K, Sugimoto T, Miyazaki S (2002) Mater Trans 43:852CrossRefGoogle Scholar
  6. 6.
    Murray SJ, Marioni M, Allen SM, O’Handley RC, Lograsso TA (2000) Appl Phys Lett 77:886CrossRefGoogle Scholar
  7. 7.
    Sozinov A, Likhachev AA, Ullakko K (2002) IEEE Trans Magn 38:2814CrossRefGoogle Scholar
  8. 8.
    Gao L, Cai W, Liu AL, Zhao LC (2006) J Alloy Compd 425:314CrossRefGoogle Scholar
  9. 9.
    Tsuchiya K, Tsutsumi A, Ohtsuka H, Umemoto M (2004) Mater Sci Eng A 378:370CrossRefGoogle Scholar
  10. 10.
    Nakanishi N, Mori T, Miura S, Murakami Y, Kachi S (1973) Philos Mag 28:277CrossRefGoogle Scholar
  11. 11.
    Khan M, Dubenko I, Stadler S, ALi N (2004) J Phys Condens Matter 16:5259CrossRefGoogle Scholar
  12. 12.
    Stadle S, Khan M, Mitchell J, Ali N, Gomes AM, Dubenko I, Takeuchi AY, Guimaraes AP (2006) Appl Phys Lett 88:192511CrossRefGoogle Scholar
  13. 13.
    Wang HB, Chen F, Gao ZY, Cai W, Zhao LC (2006) Mater Sci Eng A 438–440:990Google Scholar
  14. 14.
    Cong DY, Wang S, Wang YD, Ren Y, Zuo L, Esling C (2007) Mater Sci Eng A 473:213Google Scholar
  15. 15.
    Glavatskyy I, Glavatska N, Dobrinsky A, Hoffmann J-U, Söderberg O, Hannula S-P (2007) Scripta Mater 56:565CrossRefGoogle Scholar
  16. 16.
    Khan M, Dubenko I, Stadler S, Ali N (2005) J Appl Phys 97:10M304-1Google Scholar
  17. 17.
    Dong GF, Cai W, Gao ZY, Sui JH (2008) Scripta Mater 58:647CrossRefGoogle Scholar
  18. 18.
    Dong GF, Tan CL, Gao ZY, Feng Y, Cai W, Sui JH (2008) Scripta Mater 59:268CrossRefGoogle Scholar
  19. 19.
    Gao ZY, Dong GF, Cai W, Sui JH, Feng Y, Li XH (2009) J Alloy Compd 481:44CrossRefGoogle Scholar
  20. 20.
    Dong GF, Gao ZY, Tan CL, Cai W, Sui JH (2010) J Mater Sci 45:5490. doi: 10.1007/s10853-010-4606-1 CrossRefGoogle Scholar
  21. 21.
    Scanchez-Alarcos V, Perez-Landazabal JI, Recarte V, Gomez-polo C, Rodriguez-Velamazan JA (2008) Acta Mater 56:5370CrossRefGoogle Scholar
  22. 22.
    Chen XQ, Lu X, Wang DY, Qin ZX (2008) Smart Mater Struct 17:065030CrossRefGoogle Scholar
  23. 23.
    Cong DY, Wang S, Wang YD, Ren Y, Zuo L, Esling C (2008) Mater Sci Eng A 473:213CrossRefGoogle Scholar
  24. 24.
    Hae-Min Lee, Anthony JK, Rotermund F et al (2009) J Mater Sci 44:3731. doi: 10.1007/s10853-009-3498-4 CrossRefGoogle Scholar
  25. 25.
    Coughlin JP, Williams JJ, Chawla N (2009) J Mater Sci 44:700. doi: 10.1007/s10853-008-3188-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. F. Dong
    • 1
    • 2
  • Z. Y. Gao
    • 3
  • X. L. Zhang
    • 1
  • W. Cai
    • 3
  • J. H. Sui
    • 3
  1. 1.Department of PhysicsDalian UniversityDalianChina
  2. 2.College of Physics and Optoelectronic EngineeringDalian University of TechnologyDalianChina
  3. 3.National Key Laboratory Precision Hot Processing of Metals, School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations