Journal of Materials Science

, Volume 46, Issue 12, pp 4176–4190 | Cite as

Impurity and vacancy segregation at symmetric tilt grain boundaries in Y2O3-doped ZrO2

  • Masato Yoshiya
  • Takashi Oyama
IIB 2010


Segregation energies of impurity ions and oxygen vacancies at grain boundaries in Y2O3-doped ZrO2 as calculated from atomistic simulations using energy minimization and Monte Carlo methods are reported. Based on these energies, local defect equilibrium concentrations have been estimated. It is found that it is more energetically favorable for an yttrium ion to be accompanied by an oxygen vacancy at grain boundaries, although decrease in energy when associated with an oxygen vacancy differs from boundary to boundary. The segregation energy for a neutral defect complex consisting of a two yttrium ions and an oxygen vacancy at infinitely dilute concentration is highly correlated with the coordination environment of each site in the vicinity of the grain boundary (GB), and, in turn, GB energy. Although the estimated local equilibrium concentrations of these defects are similar, detailed analysis of the atomic coordination and defect distributions in the vicinity of a GB reveal that defect distributions, especially of oxygen vacancies, are dependent on the characteristics of the particular GB and that segregation in effect reduces lattice strains at the GB. Equilibrium concentration distributions of yttrium at grain boundaries are also given as a function of spatial resolution, and are useful for interpretation of experimental results.


Oxygen Vacancy Grain Boundary Coordination Environment Defect Complex Coincidence Site Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for useful discussions with Drs H. Matsubara and C. A. J. Fisher at the Japan Fine Ceramics Center and Prof. K. Matsunaga at Kyoto University. This study is in part supported by Grant-in-Aid for Scientific Research on Priority Areas “Atomic Scale Modification” (No. 474) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Hondros ED, Seah MP (1983) In: Cahn RW, Haasen P (eds) Physical metallurgy. Amsterdam, North-HollandGoogle Scholar
  2. 2.
    Hondros ED, Seah MP (1977) Metal Trans A 8:1363CrossRefGoogle Scholar
  3. 3.
    Hofmann S (1987) J Chim Phys Phys Chim Biol 84:141Google Scholar
  4. 4.
    Sutton AP, Balllufi RW (1995) Interfaces in crystalline materials. Oxford University Press, New YorkGoogle Scholar
  5. 5.
    Ikuhara Y, Thavorniti P, Sakuma T (1997) Acta Mater 45:5275CrossRefGoogle Scholar
  6. 6.
    Dickey EC, Fan X, Pennycook SJ (2001) J Am Ceram Soc 84:1361CrossRefGoogle Scholar
  7. 7.
    Shibata N, Morishige N, Yamamoto T, Ikuhara Y, Sakuma T (2002) Philos Mag Lett 82:175CrossRefGoogle Scholar
  8. 8.
    Shibata N, Yamamoto T, Ikuhara Y, Sakuma T (2001) J Electron Microsc 50:429CrossRefGoogle Scholar
  9. 9.
    Shibata N, Oba F, Yamamoto T, Ikuhara Y (2004) Philos Mag 84:2381CrossRefGoogle Scholar
  10. 10.
    Nohara Y, Tochigi E, Shibata N, Yamamoto T, Ikuhara Y (2010) J Electron Microsc 59:S117CrossRefGoogle Scholar
  11. 11.
    Backhaus-Ricoult M, Badding M, Thibault Y (2006) Ceram Trans 179:173Google Scholar
  12. 12.
    Hertz JL, Rothschild A, Tuller HL (2009) J Electroceram 22:428CrossRefGoogle Scholar
  13. 13.
    Fergus JW (2006) J Power Sources 162:30CrossRefGoogle Scholar
  14. 14.
    Ormerod RM (2003) Chem Soc Rev 32:17CrossRefGoogle Scholar
  15. 15.
    Fleming WJ (1977) J Electrochem Soc 124:21CrossRefGoogle Scholar
  16. 16.
    Verkerk MJ, Middlehuis BJ, Burggraaf AJ (1982) Solid State Ionics 6:159CrossRefGoogle Scholar
  17. 17.
    Fisher CAJ, Matsubara H (1999) J Eur Ceram Soc 19:703CrossRefGoogle Scholar
  18. 18.
    Cheikh A, Madani A, Touati A, Boussetta H, Monty C (2001) J Eur Ceram Soc 21:1837CrossRefGoogle Scholar
  19. 19.
    Chun SY, Mizutani N (2001) Appl Surf Sci 171:82CrossRefGoogle Scholar
  20. 20.
    Nakagawa T, Sakaguchi I, Shibata N, Matsunaga K, Yamamoto T, Haneda H, Ikuhara Y (2005) J Mater Sci 48:3185. doi: 10.1007/s10853-005-2682-4 CrossRefGoogle Scholar
  21. 21.
    Peters C, Weber A, Gerthsen D, Ivers-Tiffée E (2009) J Am Ceram Soc 92:2017CrossRefGoogle Scholar
  22. 22.
    Hughes AE, Sexton BA (1989) J Mater Sci 24:1057. doi: 10.1007/BF01148798 CrossRefGoogle Scholar
  23. 23.
    Nieh TG, Yaney DL, Wadsworth J (1989) Scripta Mater 23:2007CrossRefGoogle Scholar
  24. 24.
    Boulc’h F, Djurado E, Dessemond L (2004) J Electrochem Soc 151:A1210CrossRefGoogle Scholar
  25. 25.
    Oyama T, Yoshiya M, Matsubara H, Matsunaga K (2005) Phys Rev B 71:224105-1Google Scholar
  26. 26.
    Matsui K, Yoshida H, Ikuhara Y (2008) Acta Mater 56:1315CrossRefGoogle Scholar
  27. 27.
    Zapata-Solvas E, de Bernardi-Martín S, Gómez-García D (2010) Int J Mater Res 101:84Google Scholar
  28. 28.
    Chaim R, Brandon DG, Heuer AH (1986) Acta Metall 34:1933CrossRefGoogle Scholar
  29. 29.
    Whalen PJ, Reidinger F, Correale ST, Marti J (1987) J Mater Sci 22:4465. doi: 10.1007/BF01132048 CrossRefGoogle Scholar
  30. 30.
    Theunissen GSAM, Winnubst AJA, Burggraaf AJ (1989) J Mater Sci Lett 8:55CrossRefGoogle Scholar
  31. 31.
    Hughes AE, Badwal SPS (1990) Solid State Ionics 40(41):312CrossRefGoogle Scholar
  32. 32.
    Hughes AE, Badwal SPS (1991) Solid State Ionics 46:265CrossRefGoogle Scholar
  33. 33.
    Stanek CR, Grimes RW, Rushton MJD, McClellan KJ, Rawlings RD (2005) Philos Mag Lett 85:445CrossRefGoogle Scholar
  34. 34.
    Nowotny J, Sorrell CC, Bak T (2005) Surf Interface Anal 37:316CrossRefGoogle Scholar
  35. 35.
    Wang XG (2008) Surf Sci 602:L5CrossRefGoogle Scholar
  36. 36.
    Lahiri J, Mayernick A, Morrow SL, Koel BE, van Duin ACT, Janik MJ, Batzill M (2010) J Phys Chem C 114:5990CrossRefGoogle Scholar
  37. 37.
    Mayernick AD, Batzill M, van Duin ACT, Janik MJ (2010) Surf Sci 604:1438CrossRefGoogle Scholar
  38. 38.
    Lee HB, Prinz FB, Cai W (2010) Acta Mater 58:2197CrossRefGoogle Scholar
  39. 39.
    Guo X (1995) Solid State Ionics 81:235CrossRefGoogle Scholar
  40. 40.
    Guo X, Maier J (2001) J Electrochem Soc 148:E121CrossRefGoogle Scholar
  41. 41.
    Guo X, Zhang Z (2003) Acta Mater 51:2539CrossRefGoogle Scholar
  42. 42.
    Guo X, Ding Y (2004) J Electrochem Soc 151:J1CrossRefGoogle Scholar
  43. 43.
    De Souza RA, Pietrowski MJ, Anselmi-Tamburini U, Kim S, Munir ZA, Martin M (2008) Phys Chem Chem Phys 10:2067CrossRefGoogle Scholar
  44. 44.
    Durá OJ, López de la Torre MA, Vázquez L, Chaboy J, Boada R, Rivera-Calzada A, Santamaria J, Leon C (2010) Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects. Phys Rev B 81:184301-1-9Google Scholar
  45. 45.
    Mondal P, Klein A, Jaegermann W, Hahn H (1999) Solid State Ionics 118:331CrossRefGoogle Scholar
  46. 46.
    Knöner G, Reimann K, Röwer R, Södervall U, Schaefer HE (2003) PNAS 100:3870CrossRefGoogle Scholar
  47. 47.
    Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowmdes DH (2004) Electrochem Solid-State Lett 7:A459CrossRefGoogle Scholar
  48. 48.
    Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowndes DH (2005) Solid State Ionics 176:1319CrossRefGoogle Scholar
  49. 49.
    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Science 321:676CrossRefGoogle Scholar
  50. 50.
    Kushima A, Yildiz B (2010) J Mater Chem 20:4809CrossRefGoogle Scholar
  51. 51.
    Minervini L, Zacate MO, Grimes RW (1999) Solid State Ionics 116:339CrossRefGoogle Scholar
  52. 52.
    Minervini L, Grimes RW, Sickafus KE (2000) J Am Ceram Soc 83:1873CrossRefGoogle Scholar
  53. 53.
    Gale JD (1997) J Chem Soc Faraday Trans 93:629CrossRefGoogle Scholar
  54. 54.
    Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) J Chem Phys 21:1087CrossRefGoogle Scholar
  55. 55.
    Yoshiya M, Yoshizu H (2010) Mater Trans 51:51CrossRefGoogle Scholar
  56. 56.
    Yoshiya M, Shimizu K, Oyama T, Yasuda H (in preparation)Google Scholar
  57. 57.
    Oyama T, Wada N, Takagi H, Yoshiya M (2010) Phys Rev B 82:134107-1Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Nanostructure Research LaboratoryJapan Fine Ceramics CenterNagoyaJapan
  2. 2.Department of Adaptive Machine SystemsOsaka UniversityOsakaJapan
  3. 3.Murata Manufacturing Co., Ltd.KyotoJapan

Personalised recommendations