Skip to main content
Log in

Short range order structure of amorphous B4C boron carbide thin films

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

B4C boron carbide thin films deposited by radio frequency magnetron sputtering in the temperature ranging from room temperature to 650 °C are amorphous. In this article, pair distribution function (PDF) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the short range order (SRO) structure of amorphous B4C thin films. FTIR spectra indicated that icosahedrons exist in the amorphous B4C thin films. The existence of icosahedrons was further verified by the PDFs of amorphous B4C thin films, which were derived from digital selected area electron diffraction patterns. Furthermore, by comparing the PDFs of amorphous B4C thin films with those of three crystalline boron modifications and three structural models of boron carbides (B4C or B10C2), the SRO structure of amorphous B4C thin film was revealed to be similar to that of β-rhombohedral boron, but with the peak shifted to shorter distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen MW, McCauley JW, Hemker KJ (2003) Science 299(5612):1563

    Article  CAS  Google Scholar 

  2. Wu ML, Kiely JD, Klemmer T, Hsia YT, Howard K (2004) Thin Solid Films 449(1–2):120

    Article  CAS  Google Scholar 

  3. Jacobsohn LG, Nastasi M (2005) Surf Coat Tech 200(5–6):1472

    Article  CAS  Google Scholar 

  4. Golikova OA (1979) Phys Status Solidi A 51(1):11

    Article  CAS  Google Scholar 

  5. Schmechel R, Werheit H (1999) J Phys Condens Matter 11(35):6803

    Article  CAS  Google Scholar 

  6. Carrard M, Emin D, Zuppiroli L (1995) Phys Rev B 51(17):11270

    Article  CAS  Google Scholar 

  7. Emin D (2006) J Solid State Chem 179(9):2791

    Article  CAS  Google Scholar 

  8. Caruso AN, Billa RB, Balaz S, Brand JI, Dowben PA (2004) J Phys Condens Matter 16(10):L139

    Article  CAS  Google Scholar 

  9. Hong NN, Mullins J, Foreman K, Adenwalla S (2010) J Phys D 43(27):275101

    Article  Google Scholar 

  10. Osberg K, Schemm N, Balkir S, Brand JO, Hallbeck MS, Dowben PA, Hoffman MW (2006) IEEE Sens J 6(6):1531

    Article  CAS  Google Scholar 

  11. Day E, Diaz MJ, Adenwalla S (2006) J Phys D 39(14):2920

    Article  CAS  Google Scholar 

  12. Caruso AN, Dowben PA, Balkir S, Schemm N, Osberg K, Fairchild RW, Flores OB, Balaz S, Harken AD, Robertson BW, Brand JI (2006) Mater Sci Eng B 135(2):129

    Article  CAS  Google Scholar 

  13. Sezer AO, Brand JI (2001) Mater Sci Eng B 79(3):191

    Article  Google Scholar 

  14. Jansson U, Carlsson JO, Stridh B, Soderberg S, Olsson M (1989) Thin Solid Films 172(1):81

    Article  CAS  Google Scholar 

  15. Olsson M, Soderberg S, Stridh B, Jansson U, Carlsson JO (1989) Thin Solid Films 172(1):95

    Article  CAS  Google Scholar 

  16. Kulikovsky V, Vorlicek V, Bohac R, Ctvrtlik R, Stranyanek M, Dejneka A, Jastrabik L (2009) Diam Relat Mater 18(1):27

    Article  CAS  Google Scholar 

  17. Bao R, Chrisey DB (2010) Thin Solid Films 519(1):164

    Article  CAS  Google Scholar 

  18. Csako T, Budai J, Szorenyi T (2006) Appl Surf Sci 252(13):4707

    Article  CAS  Google Scholar 

  19. Kokai F, Taniwaki M, Takahashi K, Goto A, Ishihara M, Yamamoto K, Koga Y (2001) Diam Relat Mater 10(3–7):1412

    Article  CAS  Google Scholar 

  20. Kokai F, Taniwaki M, Ishihara M, Koga Y (2002) Appl Phys A 74(4):533

    Article  CAS  Google Scholar 

  21. Ronning C, Schwen D, Eyhusen S, Vetter U, Hofsass H (2002) Surf Coat Tech 158:382

    Article  Google Scholar 

  22. Suri AK, Subramanian C, Sonber JK, Murthy TSRC (2010) Int Mater Rev 55(1):4

    Article  CAS  Google Scholar 

  23. Cockayne DJH (2007) Annu Rev Mater Res 37:159

    Article  CAS  Google Scholar 

  24. Cockayne DJH, Mckenzie DR (1988) Acta Crystallogr A 44:870

    Article  Google Scholar 

  25. Doyle PA, Turner PS (1968) Acta Crystallogr A 24(3):390

    Article  CAS  Google Scholar 

  26. Decker BF, Kasper JS (1959) Acta Crystallogr 12(7):503

    Article  CAS  Google Scholar 

  27. Callmer B (1977) Acta Crystallogr B 33:1951

    Article  Google Scholar 

  28. Hoard JL, Hughes RE, Sands DE (1958) J Am Chem Soc 80(17):4507

    Article  CAS  Google Scholar 

  29. Aselage TL, Tissot RG (1992) J Am Ceram Soc 75(8):2207

    Article  CAS  Google Scholar 

  30. Lazzari R, Vast N, Besson JM, Baroni S, Dal Corso A (1999) Phys Rev Lett 83(16):3230

    Article  CAS  Google Scholar 

  31. Pfrommer BG, Cote M, Louie SG, Cohen ML (1997) J Comput Phys 131(1):233

    Article  CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  33. Kobayashi M (1988) J Mater Sci 23(12):4392. doi:10.1007/BF00551937

    Article  CAS  Google Scholar 

  34. Katada K (1966) Jpn J Appl Phys 5(7):582

    Article  CAS  Google Scholar 

  35. Palatnik LS, Kozma AA, Nechitailo AA (1983) Kristallografiya 28(1):136

    CAS  Google Scholar 

  36. Galasso F, Kuehl D, Tice W (1967) J Appl Phys 38(1):414

    Article  CAS  Google Scholar 

  37. Galasso F, Vaslet R, Pinto J (1966) Appl Phys Lett 8(12):331

    Article  CAS  Google Scholar 

  38. Werheit H, Leithe-Jasper A, Tanaka T, Rotter HW, Schwetz KA (2004) J Solid State Chem 177(2):575

    Article  CAS  Google Scholar 

  39. Shirai K, Emura S (1997) J Solid State Chem 133(1):93

    Article  CAS  Google Scholar 

  40. Shirai K, Emura S (1996) J Phys Condens Matter 8(50):10919

    Article  CAS  Google Scholar 

  41. Franz R, Werheit H (1989) Europhys Lett 9(2):145

    Article  CAS  Google Scholar 

  42. Morosin B, Kwei GH, Lawson AC, Aselage TL, Emin D (1995) J Alloy Compd 226(1–2):121

    Article  CAS  Google Scholar 

  43. Werheit H (2006) J Phys Condens Matter 18(47):10655

    Article  CAS  Google Scholar 

  44. Bao RQ, Yan ZJ, Chrisey DB (Unpublished data)

  45. Badzian AR (1967) Mater Res Bull 2(11):987

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would express their thanks to Prof. Pawel Keblinski at Rensselaer Polytechnic Institute for useful discussion and suggestions about the calculation of the reduced radial distribution function and pair distribution function. This study was supported by the DARPA Micro-Isotope Power Sources Program and Rensselaer Polytechnic Institute start-up funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas B. Chrisey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, R., Chrisey, D.B. Short range order structure of amorphous B4C boron carbide thin films. J Mater Sci 46, 3952–3959 (2011). https://doi.org/10.1007/s10853-011-5320-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5320-3

Keywords

Navigation