Journal of Materials Science

, Volume 46, Issue 11, pp 3952–3959 | Cite as

Short range order structure of amorphous B4C boron carbide thin films

  • Ruqiang Bao
  • Douglas B. Chrisey


B4C boron carbide thin films deposited by radio frequency magnetron sputtering in the temperature ranging from room temperature to 650 °C are amorphous. In this article, pair distribution function (PDF) and Fourier transform infrared (FTIR) spectroscopy were used to characterize the short range order (SRO) structure of amorphous B4C thin films. FTIR spectra indicated that icosahedrons exist in the amorphous B4C thin films. The existence of icosahedrons was further verified by the PDFs of amorphous B4C thin films, which were derived from digital selected area electron diffraction patterns. Furthermore, by comparing the PDFs of amorphous B4C thin films with those of three crystalline boron modifications and three structural models of boron carbides (B4C or B10C2), the SRO structure of amorphous B4C thin film was revealed to be similar to that of β-rhombohedral boron, but with the peak shifted to shorter distance.


Boron High Resolution Transmission Electron Microscopy Boron Atom Boron Carbide Select Area Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would express their thanks to Prof. Pawel Keblinski at Rensselaer Polytechnic Institute for useful discussion and suggestions about the calculation of the reduced radial distribution function and pair distribution function. This study was supported by the DARPA Micro-Isotope Power Sources Program and Rensselaer Polytechnic Institute start-up funds.


  1. 1.
    Chen MW, McCauley JW, Hemker KJ (2003) Science 299(5612):1563CrossRefGoogle Scholar
  2. 2.
    Wu ML, Kiely JD, Klemmer T, Hsia YT, Howard K (2004) Thin Solid Films 449(1–2):120CrossRefGoogle Scholar
  3. 3.
    Jacobsohn LG, Nastasi M (2005) Surf Coat Tech 200(5–6):1472CrossRefGoogle Scholar
  4. 4.
    Golikova OA (1979) Phys Status Solidi A 51(1):11CrossRefGoogle Scholar
  5. 5.
    Schmechel R, Werheit H (1999) J Phys Condens Matter 11(35):6803CrossRefGoogle Scholar
  6. 6.
    Carrard M, Emin D, Zuppiroli L (1995) Phys Rev B 51(17):11270CrossRefGoogle Scholar
  7. 7.
    Emin D (2006) J Solid State Chem 179(9):2791CrossRefGoogle Scholar
  8. 8.
    Caruso AN, Billa RB, Balaz S, Brand JI, Dowben PA (2004) J Phys Condens Matter 16(10):L139CrossRefGoogle Scholar
  9. 9.
    Hong NN, Mullins J, Foreman K, Adenwalla S (2010) J Phys D 43(27):275101CrossRefGoogle Scholar
  10. 10.
    Osberg K, Schemm N, Balkir S, Brand JO, Hallbeck MS, Dowben PA, Hoffman MW (2006) IEEE Sens J 6(6):1531CrossRefGoogle Scholar
  11. 11.
    Day E, Diaz MJ, Adenwalla S (2006) J Phys D 39(14):2920CrossRefGoogle Scholar
  12. 12.
    Caruso AN, Dowben PA, Balkir S, Schemm N, Osberg K, Fairchild RW, Flores OB, Balaz S, Harken AD, Robertson BW, Brand JI (2006) Mater Sci Eng B 135(2):129CrossRefGoogle Scholar
  13. 13.
    Sezer AO, Brand JI (2001) Mater Sci Eng B 79(3):191CrossRefGoogle Scholar
  14. 14.
    Jansson U, Carlsson JO, Stridh B, Soderberg S, Olsson M (1989) Thin Solid Films 172(1):81CrossRefGoogle Scholar
  15. 15.
    Olsson M, Soderberg S, Stridh B, Jansson U, Carlsson JO (1989) Thin Solid Films 172(1):95CrossRefGoogle Scholar
  16. 16.
    Kulikovsky V, Vorlicek V, Bohac R, Ctvrtlik R, Stranyanek M, Dejneka A, Jastrabik L (2009) Diam Relat Mater 18(1):27CrossRefGoogle Scholar
  17. 17.
    Bao R, Chrisey DB (2010) Thin Solid Films 519(1):164CrossRefGoogle Scholar
  18. 18.
    Csako T, Budai J, Szorenyi T (2006) Appl Surf Sci 252(13):4707CrossRefGoogle Scholar
  19. 19.
    Kokai F, Taniwaki M, Takahashi K, Goto A, Ishihara M, Yamamoto K, Koga Y (2001) Diam Relat Mater 10(3–7):1412CrossRefGoogle Scholar
  20. 20.
    Kokai F, Taniwaki M, Ishihara M, Koga Y (2002) Appl Phys A 74(4):533CrossRefGoogle Scholar
  21. 21.
    Ronning C, Schwen D, Eyhusen S, Vetter U, Hofsass H (2002) Surf Coat Tech 158:382CrossRefGoogle Scholar
  22. 22.
    Suri AK, Subramanian C, Sonber JK, Murthy TSRC (2010) Int Mater Rev 55(1):4CrossRefGoogle Scholar
  23. 23.
    Cockayne DJH (2007) Annu Rev Mater Res 37:159CrossRefGoogle Scholar
  24. 24.
    Cockayne DJH, Mckenzie DR (1988) Acta Crystallogr A 44:870CrossRefGoogle Scholar
  25. 25.
    Doyle PA, Turner PS (1968) Acta Crystallogr A 24(3):390CrossRefGoogle Scholar
  26. 26.
    Decker BF, Kasper JS (1959) Acta Crystallogr 12(7):503CrossRefGoogle Scholar
  27. 27.
    Callmer B (1977) Acta Crystallogr B 33:1951CrossRefGoogle Scholar
  28. 28.
    Hoard JL, Hughes RE, Sands DE (1958) J Am Chem Soc 80(17):4507CrossRefGoogle Scholar
  29. 29.
    Aselage TL, Tissot RG (1992) J Am Ceram Soc 75(8):2207CrossRefGoogle Scholar
  30. 30.
    Lazzari R, Vast N, Besson JM, Baroni S, Dal Corso A (1999) Phys Rev Lett 83(16):3230CrossRefGoogle Scholar
  31. 31.
    Pfrommer BG, Cote M, Louie SG, Cohen ML (1997) J Comput Phys 131(1):233CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865CrossRefGoogle Scholar
  33. 33.
    Kobayashi M (1988) J Mater Sci 23(12):4392. doi: 10.1007/BF00551937 CrossRefGoogle Scholar
  34. 34.
    Katada K (1966) Jpn J Appl Phys 5(7):582CrossRefGoogle Scholar
  35. 35.
    Palatnik LS, Kozma AA, Nechitailo AA (1983) Kristallografiya 28(1):136Google Scholar
  36. 36.
    Galasso F, Kuehl D, Tice W (1967) J Appl Phys 38(1):414CrossRefGoogle Scholar
  37. 37.
    Galasso F, Vaslet R, Pinto J (1966) Appl Phys Lett 8(12):331CrossRefGoogle Scholar
  38. 38.
    Werheit H, Leithe-Jasper A, Tanaka T, Rotter HW, Schwetz KA (2004) J Solid State Chem 177(2):575CrossRefGoogle Scholar
  39. 39.
    Shirai K, Emura S (1997) J Solid State Chem 133(1):93CrossRefGoogle Scholar
  40. 40.
    Shirai K, Emura S (1996) J Phys Condens Matter 8(50):10919CrossRefGoogle Scholar
  41. 41.
    Franz R, Werheit H (1989) Europhys Lett 9(2):145CrossRefGoogle Scholar
  42. 42.
    Morosin B, Kwei GH, Lawson AC, Aselage TL, Emin D (1995) J Alloy Compd 226(1–2):121CrossRefGoogle Scholar
  43. 43.
    Werheit H (2006) J Phys Condens Matter 18(47):10655CrossRefGoogle Scholar
  44. 44.
    Bao RQ, Yan ZJ, Chrisey DB (Unpublished data)Google Scholar
  45. 45.
    Badzian AR (1967) Mater Res Bull 2(11):987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations