Journal of Materials Science

, Volume 46, Issue 19, pp 6316–6322 | Cite as

Mechanical behavior of bulk nanocrystalline copper alloys produced by high energy ball milling

  • H. Bahmanpour
  • K. M. Youssef
  • R. O. Scattergood
  • C. C. Koch
Abbaschian Festschrift


Copper alloys with different amounts of zinc were synthesized via high energy ball milling at liquid nitrogen and room temperature. Bulk samples were produced in situ by controlling the milling temperature. It is shown that temperature plays an important role in formation of artifact-free consolidated samples via its effect on defect formation and annihilation during the milling process. The mechanical behavior of Cu–Zn nanocrystalline alloys was examined using Vickers microhardness and tensile tests. The nanostructure of the alloys was investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hardness results of processed alloys vary as a function of the alloying elements. Considering typical low ductility of nanocrystalline materials, the improved ductility with the high strength observed in these alloys suggests that they are artifact-free and may have several deformation mechanisms, which may include dislocation activity and nano-twinning.


Milling Dislocation Density Severe Plastic Deformation Screw Dislocation Edge Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of National Science Foundation under contract DMR-0806323 is gratefully acknowledged.


  1. 1.
    Youssef KM, Scattergood RO, Murty KL, Horton JA, Koch CC (2005) Appl Phys Lett 87(9):0919041CrossRefGoogle Scholar
  2. 2.
    Youssef KM, Scattergood RO, Murty KL, Koch CC (2004) Appl Phys Lett 85(6):929CrossRefGoogle Scholar
  3. 3.
    Harris AM, Schaffer GB, Page NW (1993) J Mater Sci Lett 12(14):1103CrossRefGoogle Scholar
  4. 4.
    Harris AM, Schaffer GB, Page NW (1996) Scr Mater 34(1):67CrossRefGoogle Scholar
  5. 5.
    Calka A, Wexler D (2001) In: Schumacher P, Warren P, Cantor B (eds) Metastable, mechanically alloyed and nanocrystalline materials, ISMANAM-2000, vol 360–363. Materials Science Forum, Trans Tech Publications Ltd, Zurich-Uetikon, p 301Google Scholar
  6. 6.
    Leoni M, Confente T, Scardi P (2006) Z Kristallogr 23:249Google Scholar
  7. 7.
    Lavernia EJ, Han BQ, Schoenung JM (2008) Mater Sci Eng A 493(1–2):207Google Scholar
  8. 8.
    Zhao YH, Liao XZ, Horita Z, Langdon TG, Zhu YT (2008) Mater Sci Eng A 493(1–2):123Google Scholar
  9. 9.
    Basinski ZS, Basinski SJ (1989) Acta Metall 37(12):3275CrossRefGoogle Scholar
  10. 10.
    Wang YB, Liao XZ, Zhao YH, Lavernia EJ, Ringer SP, Horita Z, Langdon TG, Zhu YT (2010) Mater Sci Eng A 527(18–19):4959Google Scholar
  11. 11.
    Shen TD, Koch CC (1996) Acta Mater 44(2):753CrossRefGoogle Scholar
  12. 12.
    Scardi P, D’Incau M, Leoni M, Fais A (2010) Metall Mater Trans A 41(5):1196CrossRefGoogle Scholar
  13. 13.
    Fais A, Scardi P (2008) Z Kristallogr 27:37Google Scholar
  14. 14.
    Wilkens M (1969) J Res Nat Bur Stand A 73(5):552Google Scholar
  15. 15.
    Davis RM, McDermott B, Koch CC (1988) Metall Mater Trans A 19(12):2867CrossRefGoogle Scholar
  16. 16.
    Xi SQ, Zhou JG, Wang XT (2007) Powder Metall 50(4):367CrossRefGoogle Scholar
  17. 17.
    Joardar J, Pabi SK, Murty BS (2004) Scr Mater 50(9):1199CrossRefGoogle Scholar
  18. 18.
    Schafler E, Steiner G, Korznikova E, Kerber M, Zehetbauer MJ (2005) Mater Sci Eng A 410–411:169Google Scholar
  19. 19.
    Ungar T, Schafler E, Hanak P, Bernstorff S, Zehetbauer M (2007) Mater Sci Eng A 462(1–2):398Google Scholar
  20. 20.
    Zehetbauer MJ, Kohout J, Schafler E, Sachslehner F, Dubravina A (2004) J Alloys Compd 378(1–2):329CrossRefGoogle Scholar
  21. 21.
    Zehetbauer MJ, Steiner G, Schafler E, Korznikov A, Korznikova E (2006) In: Horita Z (ed) Nanomaterials by severe plastic deformation, vol 503–504. Materials Science Forum, Trans Tech Publications Ltd, Zurich-Uetikon, p 57Google Scholar
  22. 22.
    Cao WQ, Gu CF, Pereloma EV, Davies CHJ (2008) Mater Sci Eng A 492:74CrossRefGoogle Scholar
  23. 23.
    Ungar T (2006) In: Horita Z (ed) Nanomaterials by severe plastic deformation, vol 503–504. Materials Science Forum, Trans Tech Publications Ltd, Zurich-Uetikon, p 133Google Scholar
  24. 24.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Boston, Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Zehetbauer M, Schafler E, Ungar T (2005) Zeitschrift Fur Metallkunde 96(9):1044Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • H. Bahmanpour
    • 1
  • K. M. Youssef
    • 1
  • R. O. Scattergood
    • 1
  • C. C. Koch
    • 1
  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations