Advertisement

Journal of Materials Science

, Volume 46, Issue 12, pp 4199–4205 | Cite as

First-principles calculation of grain boundary energy and grain boundary excess free volume in aluminum: role of grain boundary elastic energy

  • Tokuteru Uesugi
  • Kenji Higashi
IIB 2010

Abstract

We examined the grain boundary energy (GBE) and grain boundary excess free volume (BFV) by applying the first-principles calculation for six [110] symmetric tilt grain boundaries in aluminum to clarify the origin of GBE. The GBE increased linearly as BFV increased. The elastic energy associated with BFV, namely the grain boundary elastic energy, was estimated as a function of BFV and the shear modulus. The grain boundary elastic energies were close in value to the GBEs. The charge density distributions indicated that the bonding in the grain boundary region is significantly different from the bonding in the bulk. The grain boundary elastic energies were 15–32% higher than the GBEs. This overestimation of the grain boundary elastic energy is caused by the characteristics of the electronic bonding at the grain boundary, which is different from bonding in the bulk. We have concluded that GBE results mainly from the grain boundary elastic energy.

Keywords

Elastic Energy Generalize Gradient Approximation Local Density Approximation Boundary Plane Coincidence Site Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Mr. Yasuhiko Inoue and Mr. Yuuki Nishiie, who were students in the department, for their assistance with the computations. This study was partly supported by a Giant-in-Aid for scientific Research on the Priority Area “Giant Straining Process for Advanced Materials Containing Ultra-High Density Lattice Defects” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and by the Light Metal Educational Foundation Inc. The authors thank Dr. Masanori Kohyama for useful discussion.

References

  1. 1.
    Merkle KL, Csencsits R, Rynes KL, Withrow JP, Stadelmann PA (1998) J Microsc 190:204CrossRefGoogle Scholar
  2. 2.
    Shvindlerman LS, Gottstein G, Ivanov VA, Molodov DA, Kolesnikov D, Lojkowski W (2006) J Mater Sci 41:7725. doi: 10.1007/s10853-006-0563-0 CrossRefGoogle Scholar
  3. 3.
    Shen TD, Zhang J, Zhao Y (2008) Acta Mater 56:3663CrossRefGoogle Scholar
  4. 4.
    Wolf D (1989) Scr Metall 23:1913CrossRefGoogle Scholar
  5. 5.
    Wolf D (1990) Acta Metall Mater 38:781CrossRefGoogle Scholar
  6. 6.
    Huang YH, Zhang JM, Xu KW (2006) Appl Surf Sci 253:698CrossRefGoogle Scholar
  7. 7.
    Takata N, Ikeda KI, Yoshida F, Nakashima H, Abe H (2004) J Jpn Inst Met 68:240CrossRefGoogle Scholar
  8. 8.
    Rittner JD, Seidman DN (1996) Phys Rev B 54:6999CrossRefGoogle Scholar
  9. 9.
    Chandra N, Dang P (1999) J Mater Sci 34:655. doi: 10.1023/A:1004531706998 CrossRefGoogle Scholar
  10. 10.
    Rajgarhia RK, Saxena A, Spearot DE, Hartwig KT, More KL, Kenik EA, Meyer H (2010) J Mater Sci 45:6707. doi: 10.1007/s10853-010-4764-1 CrossRefGoogle Scholar
  11. 11.
    Jiang Y, Smith JR (2009) J Mater Sci 44:1734. doi: 10.1007/s10853-008-3084-1 CrossRefGoogle Scholar
  12. 12.
    Pilania G, Tan DQ, Cao Y, Venkataramani VS, Chen Q, Ramprasad R (2009) J Mater Sci 44:5249. doi: 10.1007/s10853-009-3465-0 CrossRefGoogle Scholar
  13. 13.
    Wright AF, Atlas SR (1994) Phys Rev B 50:15248CrossRefGoogle Scholar
  14. 14.
    Lu G, Kioussis N (2001) Phys Rev B 64:024101CrossRefGoogle Scholar
  15. 15.
    Wang RZ, Kohyama M, Tanaka S, Tamura T, Ishibashi S (2009) Mater Trans 50:11CrossRefGoogle Scholar
  16. 16.
    Inoue Y, Uesugi T, Takigawa Y, Higashi K (2007) Mater Sci Forum 561–565:1837CrossRefGoogle Scholar
  17. 17.
    Uesugi T, Tsuchiya K, Kohyama M, Higashi K (2004) Mater Sci Forum 447–448:27CrossRefGoogle Scholar
  18. 18.
    Ogata S, Kitagawa H, Maegawa Y, Saitoh K (1997) Comput Mater Sci 7:271CrossRefGoogle Scholar
  19. 19.
    Fuchs M, Da Silva JLF, Stampfl C, Neugebauer J, Scheffler M (2002) Phys Rev B 65:245212CrossRefGoogle Scholar
  20. 20.
    Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717CrossRefGoogle Scholar
  21. 21.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  22. 22.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  24. 24.
    Vanderbilt D (1990) Phys Rev B 41:7892CrossRefGoogle Scholar
  25. 25.
    Fischer TH, Almlof J (1992) J Phys Chem 96:9768CrossRefGoogle Scholar
  26. 26.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  27. 27.
    Chetty N, Weinert M, Rahman TS, Davenport JW (1995) Phys Rev B 52:6313CrossRefGoogle Scholar
  28. 28.
    Uesugi T, Kohyama M, Higashi K (2003) Phys Rev B 68:184103CrossRefGoogle Scholar
  29. 29.
    Hartford J, von Sydow B, Wahnstrom G, Lundqvist BI (1998) Phys Rev B 58:2487CrossRefGoogle Scholar
  30. 30.
    Otsuki A, Mizuno M (1986) Trans Jpn Inst Met Suppl 27:789Google Scholar
  31. 31.
    Carling K, Wahnstrom G, Mattsson TR, Mattsson AE, Sandberg N, Grimvall G (2000) Phys Rev Lett 85:3862CrossRefGoogle Scholar
  32. 32.
    Vitos L, Ruban AV, Skriver HL, Kollar J (1998) Surf Sci 411:186CrossRefGoogle Scholar
  33. 33.
    Eshelby JD (1954) J Appl Phys 25:255CrossRefGoogle Scholar
  34. 34.
    Friedel J (1954) Adv Phys 3:446CrossRefGoogle Scholar
  35. 35.
    King HW (1966) J Mater Sci 1:79. doi: 10.1007/BF00549722 CrossRefGoogle Scholar
  36. 36.
    Kittel C (1986) Introduction to solid state physics, 6th edn. Wiley, New YorkGoogle Scholar
  37. 37.
    Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, New YorkGoogle Scholar
  38. 38.
    Ehrhart P, Jung P, Schulta H, Ullmaier H (1990) In: Ullmaier H (ed) Atomic defects in metals, Landolt-Bornstein, new series, Group III, vol 25. Springer, Berlin, p 213Google Scholar
  39. 39.
    Feibelman PJ (1990) Phys Rev Lett 65:729CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials ScienceGraduate School of Engineering, Osaka Prefecture UniversitySakaiJapan

Personalised recommendations