Journal of Materials Science

, Volume 46, Issue 10, pp 3653–3658 | Cite as

Yield strength enhancement of martensitic steel through titanium addition

  • L. Xu
  • J. Shi
  • W. Q. Cao
  • M. Q. Wang
  • W. J. Hui
  • H. Dong


Yield strength enhancement for martensitic steel fabricated by vacuum induction melting is investigated. It is found that the addition of Ti can improve the yield strength property of the martensitic steel, which can be attributed to increase in precipitation hardening from formation of TiC precipitates in the martensitic matrix. Moreover, the yield strength can be further enhanced by tempering and reheat quenching process, which can be ascribed to the formation of a superfine sized (~8 μm) grains and large amount of freshly nano-sized (1–10 nm) precipitates in the final martensitic structure for martensitic steel containing Ti. The experimental and theoretical results on the contribution of TiC precipitates to hardening of the martensitic steel are in excellent agreement, showing that the precipitation hardening of 188 MPa caused by TiC precipitates is the main reason why the yield strength for martensitic steel is enhanced via titanium addition.


Austenite Yield Strength Precipitation Hardening Martensitic Steel Martensitic Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research is supported by National Basic Research Program of China (973 program) No. 2010CB630803 and National High-tech R&D Programs (863 programs) No. 2511 and No. 2009AA033401.


  1. 1.
    Abd-Allah NM, El-Fadaly MS, Megahed MM, Eleiche AM, Mater J (2001) Eng Perform 10:576CrossRefGoogle Scholar
  2. 2.
    Ezugwu EO, Olajire KA (2002) Tribol Lett 12:183CrossRefGoogle Scholar
  3. 3.
    Yilmaz R, Türkyilmazoglu A (2007) Adv Mater Res 23:319CrossRefGoogle Scholar
  4. 4.
    Bhavsar RB, Montani E (1998) Corrosion 98:22Google Scholar
  5. 5.
    Oliver DA, Harris GT (1952) Iron Steel Inst 43:46Google Scholar
  6. 6.
    Davies WT, Hall B (1967) The Iron and Steel Inst 97:561Google Scholar
  7. 7.
    Angeliu T, Hall EL, Larsen M, Linsebigler A, Mukira C (1999) Inst Mater 708:234Google Scholar
  8. 8.
    Parameswaran P, Vijayalakshmi M, Shankar P, Raghunathan VS (1992) J Mater Sci 27:5426. doi: 10.1007/BF00367811 Google Scholar
  9. 9.
    Martin R, Mari D, Schaller R (2009) Mater Sci Eng A 521–522:117Google Scholar
  10. 10.
    Song YY, Ping DH, Yin FX, Li XY, Li YY (2010) Mater Sci Eng A 527:614CrossRefGoogle Scholar
  11. 11.
    Bhambri SK (1986) J Mater Sci 21:1741. doi: 10.1007/BF01114734 CrossRefGoogle Scholar
  12. 12.
    Ikeda S, Sakai T, Fine ME (1977) J Mater Sci 12:675. doi: 10.1007/BF00548157 CrossRefGoogle Scholar
  13. 13.
    Barani AA, Li F, Romano P, Ponge D, Raabe D (2007) Mater Sci Eng A 463:138CrossRefGoogle Scholar
  14. 14.
    Yaggee FL, Gilbert ER, Styles JW (1969) J Less Common Met 19:39CrossRefGoogle Scholar
  15. 15.
    Baviera P, Harel S, Garem H, Grosbras M (2001) Scripta Mater 44:2721CrossRefGoogle Scholar
  16. 16.
    Mani A, Aubert P, Mercier F, Khodja H, Berthier C, Houdy P (2005) Surf Coat Technol 194:190CrossRefGoogle Scholar
  17. 17.
    Li SB, Xiang WH, Zhai HX, Zhou Y (2008) Powder Technol 185:49CrossRefGoogle Scholar
  18. 18.
    Cao JC, Yong QL, Liu QY, Sun XJ (2007) J Mater Sci 42:10080. doi: 10.1007/s10853-007-2000-4 CrossRefGoogle Scholar
  19. 19.
    Sagaradze VS (1970) Met Sci Heat Treat 12:198CrossRefGoogle Scholar
  20. 20.
    Friedman LH, Chrzan DC (1998) Phys Rev Lett 83:2715CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. Xu
    • 1
  • J. Shi
    • 1
  • W. Q. Cao
    • 1
  • M. Q. Wang
    • 1
  • W. J. Hui
    • 1
  • H. Dong
    • 1
  1. 1.National Engineering Research Center of Advanced Steel Technology (NERCAST), Central Iron and Steel Research Institute (CISRI)BeijingPeople’s Republic of China

Personalised recommendations