Journal of Materials Science

, Volume 46, Issue 7, pp 2392–2396 | Cite as

Properties of In-N doped ZnO films synthesized by ion beam assisted deposition

  • Zhi Yan
  • Xia Zhang
  • Yanhui Liu
  • Xiying Zhou
  • Jun Liang


ZnO has attracted more and more attention due to its wide band gap of 3.37 eV and large exciton of 60 meV [1, 2]. Now it is used widely in blue and ultraviolet light emitting devices [3]. For the development of ZnO-based optoelectronic devices, it is important to grow high quality of both p-type and n-type ZnO films. The n-type ZnO can easily be realized by Al [4, 5], In [6], or Sr [7] doping. However, it is rather difficult to fabricate p-type ZnO because ZnO is a natural n-type semiconductor due to the self-compensating effect. Theoretical calculations [8, 9] predict that nitrogen is the best dopant for p-type ZnO, because nitrogen may substitute oxygen in ZnO and act as acceptors. But the solution of nitrogen in ZnO is limited at very low level. Co-doping method of using acceptors and donors simultaneously has been introduced to increase the solution of N in ZnO [10, 11], whereas, N is still highly hard to doping.

Recently, several techniques have been used to prepare...


Annealing Time Ultrasonic Spray Pyrolysis Hydrogen Passivation Roughness Mean Square Doping Nitrogen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is supported by Innovation Program (08YZ157), (07-24) of Shanghai Municipal Education Commission and Shanghai Leading Academic Discipline Project (J51402).


  1. 1.
    Look DC, Reynolds DC, Sizelove JR, Jones RL, Litton CW, Cantwell G, Harsch WC (1998) Solid State Commun 105:399CrossRefGoogle Scholar
  2. 2.
    Tang ZK, Wong GKL, Yu P, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (1998) Appl Phys Lett 72:3270CrossRefGoogle Scholar
  3. 3.
    Patil SB, Singh AK (2010) J Mater Sci 45:5204. doi: 10.1007/s10853-010-4559-4 CrossRefGoogle Scholar
  4. 4.
    Kim H, Gilmore CM, Horwitz JS (2000) Appl Phys Lett 76:259CrossRefGoogle Scholar
  5. 5.
    Park KC, Ma Y, Kim KH (1997) Thin Solid Films 305:201CrossRefGoogle Scholar
  6. 6.
    Nunes P, Fortunato E, Martins R (2000) Thin Solid Films 383:277CrossRefGoogle Scholar
  7. 7.
    Vijayan TA, Chandramohan R, Valanarasu S, Thirumalai J, Subramanian SP (2008) J Mater Sci 43:1776. doi: 10.1007/s10853-007-2404-1 CrossRefGoogle Scholar
  8. 8.
    Park CH (2002) Phys Rev B 66:073202CrossRefGoogle Scholar
  9. 9.
    Li L, Shan CX, Li BH, Zhang JY, Yao B, Shen DZ, Fan XW, Lu YM (2010) J Mater Sci 45:4093. doi: 10.1007/s10853-010-4497-1 CrossRefGoogle Scholar
  10. 10.
    Wang B, Zhao Y, Min J, Sang W (2009) Appl Phys A 94:715CrossRefGoogle Scholar
  11. 11.
    Shet S, Ahn KS, Wang H, Nuggehalli R, Yan Y, Turner J, Jassim MA (2010) J Mater Sci 45:5218. doi: 10.1007/s10853-010-4561-x CrossRefGoogle Scholar
  12. 12.
    Kim H, Cepler A, Cetina C, Knies D, Osofsky M, Auyeung R, Piqué A (2008) Appl Phys A 93:593CrossRefGoogle Scholar
  13. 13.
    Tien LC, Pearton SJ, Norton DP, Ren F (2008) J Mater Sci 43:6925. doi: 10.1007/s10853-008-2988-0 CrossRefGoogle Scholar
  14. 14.
    Lu JG, Zhu LP, Ye ZZ, Zhuge F, Zeng YJ, Zhao BH, Ma DW (2005) Appl Surf Sci 245:109CrossRefGoogle Scholar
  15. 15.
    Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M, Shimizu A (1997) Jpn J Appl Phys 36:1453CrossRefGoogle Scholar
  16. 16.
    Yan Z, Song ZT, Liu WL, Wan Q, Zhang FM, Feng SL (2005) Thin Solid Films 492:203CrossRefGoogle Scholar
  17. 17.
    Yuan NY, Fan LN, Li JH, Wang XQ (2007) Appl Surf Sci 253:4990CrossRefGoogle Scholar
  18. 18.
    Yamamoto T, Yoshida HK (2001) Phys B 302:155CrossRefGoogle Scholar
  19. 19.
    Ogata KI, Kawaguchi D, Kera T, Fujita S, Fujita S (1996) J Crystal Growth 159:312CrossRefGoogle Scholar
  20. 20.
    Shan FK, Kim BI, Liu GX, Liu ZF, Sohn JY, Lee WJ, Shin BC, Yu YS (2004) J Appl Phys 95:4772CrossRefGoogle Scholar
  21. 21.
    Chaabouni F, Abaab M, Rezig B (2004) Mat Sci Eng B 109:236CrossRefGoogle Scholar
  22. 22.
    Aly SA, Sayed NZE, Kaid MA (2001) Vacuum 61:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Zhi Yan
    • 1
  • Xia Zhang
    • 1
  • Yanhui Liu
    • 1
  • Xiying Zhou
    • 1
  • Jun Liang
    • 2
  1. 1.Material Engineering College, Shanghai University of Engineering ScienceShanghaiChina
  2. 2.State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiChina

Personalised recommendations