Advertisement

Journal of Materials Science

, Volume 46, Issue 12, pp 4420–4427 | Cite as

Plasticity of an alumina bicrystal near the rhombohedral twin orientation

  • Shehrazed Moulahem
  • Sylvie Lartigue-Korinek
  • Jacques Castaing
IIB 2010

Abstract

A bicrystal slightly deviated from the rhombohedral twin orientation is deformed by creep so as to activate two basal slip systems in each grain. The tilt deviation in the starting bicrystal is accommodated by two parallel arrays of disconnections with the smallest twin Burgers vectors and large associated steps. Dislocations from both grains interact with the grain boundary (GB) and the tilt deviation increases by 3.6°, giving rise to an array of pure edge disconnections with no associated steps. Interfacial defects are interpreted by reactions between incoming dislocations and GB disconnections. Decompositions of dislocations into GB disconnections are followed by glide and climb of products that can annihilate or interact to give a perfect wall of edge disconnections superimposed to the twin boundary perfect structure. Owing to their large Burgers vectors, the final disconnections are always dissociated.

Keywords

Burger Vector Grain Boundary Basal Slip Lattice Dislocation Basal Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

E. A. Stepantsov and A. L. Vasiliev from the Institute of Crystallography of Moscow are gratefully acknowledged for the preparation of the bicrystals.

References

  1. 1.
    Lartigue S, Priester L (1988) J Am Ceram Soc 71:430CrossRefGoogle Scholar
  2. 2.
    Lartigue-Korinek S, Dupau F (1994) Acta Metall Mater 42:293CrossRefGoogle Scholar
  3. 3.
    Pond RC, Smith DA, Southerdern PWJ (1978) Philos Mag A37:27Google Scholar
  4. 4.
    Valiev RZ, Gertsman VY, Kaibystshev OA (1983) Phys Stat Sol A77:97CrossRefGoogle Scholar
  5. 5.
    Cho J, Harmer MP, Chan H, Rickman JM, Thompson AM (1997) J Am Ceram Soc 80:1013CrossRefGoogle Scholar
  6. 6.
    Yoshida H, Ikuhara Y, Sakuma T (2002) Acta Mater 50:2955CrossRefGoogle Scholar
  7. 7.
    Lartigue-Korinek S, Carry C, Priester L (2002) J Eur Ceram Soc 22:1525CrossRefGoogle Scholar
  8. 8.
    Bouchet D, Lartigue Korinek S, Molins R, Thibault J (2006) Philos Mag 86:1401CrossRefGoogle Scholar
  9. 9.
    Monzen R, Sumi Y, Kitagawa K, Mori T (1990) Acta Metall Mater 38:2553CrossRefGoogle Scholar
  10. 10.
    Hanyu S, Nishimura H, Matsunaga K, Yamamoto T, Ikuhara Y, Sakuma T (2004) Mater Trans 45:2122CrossRefGoogle Scholar
  11. 11.
    Matsunaga K, Nishimura H, Muto H, Yamamoto T, Ikuhara Y (2003) Appl Phys Lett 82:1179CrossRefGoogle Scholar
  12. 12.
    Yoshida H, Ikuhara Y, Sakuma T (1999) Philos Mag Lett 79:249CrossRefGoogle Scholar
  13. 13.
    Nakamura K, Mizogushi T, Shibata N, Matsunaga K, Yamamoto T, Ikuhara Y (2007) Phys Rev B 75:184109CrossRefGoogle Scholar
  14. 14.
    Milas I, Carter EA (2009) J Mater Sci 44:1741. doi:  10.1007/s10853-008-3191-z CrossRefGoogle Scholar
  15. 15.
    Kegg GR, Horton CAP, Silcock JM (1973) Philos Mag A 27:1041CrossRefGoogle Scholar
  16. 16.
    Gleiter H (1981) Prog Mater Sci 25:125Google Scholar
  17. 17.
    Kokawa H, Watanabe T, Karashima S (1981) Philos Mag A 44:1239CrossRefGoogle Scholar
  18. 18.
    Valiev RZ, Kaibyshev OA, Astanin VV, Emaletdinov AK (1983) Phys Stat Sol 78:439CrossRefGoogle Scholar
  19. 19.
    Sheikh-Ali AD, Lavrentyev FF, Kazarov YuG (1997) Acta Mater 45:4505CrossRefGoogle Scholar
  20. 20.
    Yoshida H, Yokoyama K, Shibata N, Ikuhara Y, Sakuma T (2004) Acta Mater 52:2349CrossRefGoogle Scholar
  21. 21.
    Miller L, Avishai A, Kaplan WD (2006) J Am Ceram Soc 89:350CrossRefGoogle Scholar
  22. 22.
    Soni KK, Thompson AM, Harmer MP, Williams DB, Vhabala JM, Levi-Setti R (1995) Appl PhysLett 66:2795Google Scholar
  23. 23.
    Gavrilov KL, Bennison SJ, Mikeska KR, Chabala JM, Levi-Setti R (1999) J Am Ceram Soc 82:1001CrossRefGoogle Scholar
  24. 24.
    Sakagushi I, Srikanth V, Ikegami T, Haneda H (1995) J Am Ceram Soc 78:2557CrossRefGoogle Scholar
  25. 25.
    Snow JP, Heuer AH (1973) J Am Ceram Soc 56(3):153CrossRefGoogle Scholar
  26. 26.
    Pletka BJ, Mitchell TE, Heuer AH (1974) J Am Ceram Soc 57(9):388CrossRefGoogle Scholar
  27. 27.
    Pletka BJ, Mitchell TE, Heuer AH (1982) Acta Metall 30:147CrossRefGoogle Scholar
  28. 28.
    Lagerlöf KPD, Heuer AH, Castaing J, Rivière JP, Mitchell TE (1994) J Am Ceram Soc 77(2):385CrossRefGoogle Scholar
  29. 29.
    Castillo Rodriguez M, Castaing J, Munoz A, Veyssières P, Dominguez Rodriguez A (2008) J Am Ceram Soc 91(5):1612CrossRefGoogle Scholar
  30. 30.
    Scott WD, Orr KK (1975) Deformation of ceramic materials. Plenum, New York, p 151Google Scholar
  31. 31.
    Castaing J, Munoz A, Gomez Garcia D, Dominguez Rodriguez A (1997) Mater Sci Eng A233:121Google Scholar
  32. 32.
    Vasiliev AL, Stepantsov EA, Ivanov ZG, Verbist K, Van Tendeloo G, Olsson E (1997) Appl Surf Sci 119:215CrossRefGoogle Scholar
  33. 33.
    Pond RC (1989) In: Nabarro FRN (ed) Dislocations in Solids, vol 8. Elsevier Science Publishers, Amsterdam, p 1Google Scholar
  34. 34.
  35. 35.
    Marukawa K, Matsubara Y (1979) Trans JIM 20:560Google Scholar
  36. 36.
    Geipel T, Lagerlöf KPD, Pirouz P, Heuer AH (1994) Acta Mater 42:1367CrossRefGoogle Scholar
  37. 37.
    Lartigue-Korinek S, Hagege S (1999) In: Lejcek P, Paidar V (eds) Materials Science Forum, vols 294–296. Trans Tech Publications, Switzerland, p 281Google Scholar
  38. 38.
    Gemming T, Nufer S, Kurtz W, Ruehle M (2003) J Am Ceram Soc 86:581CrossRefGoogle Scholar
  39. 39.
    Marinopoulos AG, Elsässer C (2000) Acta Mater 48:4375CrossRefGoogle Scholar
  40. 40.
    Nishimura H, Matsunaga K, Saito T, Yamamoto T, Ikuhara Y (2003) J Am Ceram Soc 86:574CrossRefGoogle Scholar
  41. 41.
    Lartigue-Korinek S, Hagège S, Kisielowski C, Serra A (2008) Philos Mag 881:569Google Scholar
  42. 42.
    Braisaz T, Ruterana P, Nouet G, Pond RC (1997) Philos Mag A 75:1075CrossRefGoogle Scholar
  43. 43.
    Mitchell TE, Pletka BJ, Phillips DS, Heuer AH (1976) Philos Mag 34:441CrossRefGoogle Scholar
  44. 44.
    Nakamura A, Yamamoto T, Ikuhara Y (2002) Acta Mater 50:101CrossRefGoogle Scholar
  45. 45.
    Nakamura A, Matsunaga K, Yamamoto T, Ikuhara Y (2006) Philos Mag 86:4657CrossRefGoogle Scholar
  46. 46.
    Bacmann JJ, Gay MO, De Tournemine R (1982) Scr Metall 16:353CrossRefGoogle Scholar
  47. 47.
    Thibault J, Putaux JL, Jacques A, George A, Elkajbaji M (1990) Microsc Microanal Microstruct 1:395CrossRefGoogle Scholar
  48. 48.
    Priester L (2001) Mater Sci Eng A 309–310:430Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shehrazed Moulahem
    • 1
    • 3
  • Sylvie Lartigue-Korinek
    • 1
  • Jacques Castaing
    • 2
  1. 1.Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS et Université Paris 12ThiaisFrance
  2. 2.C2RMF, CNRS UMR 171, Palais du LouvreParisFrance
  3. 3.LMDM, Université de MentouriConstantineAlgeria

Personalised recommendations