Journal of Materials Science

, Volume 46, Issue 12, pp 4248–4253 | Cite as

Rapid penetration of bismuth from solid Bi2Te3 along grain boundaries in Cu and Cu-based alloys

  • S. N. Zhevnenko
  • D. V. Vaganov
  • E. I. Gershman
IIB 2010


As well known, bismuth rapidly penetrates into copper grain boundaries at about 550 °C and embrittles copper. In the experiments, the authors have used solid Bi2Te3 for the embrittlement of pure copper and copper-based solid solutions containing iron and silver. The investigated alloys were heated in the closed volume together with Bi2Te3 for a short time (5–90 min) at 570 °C in the hydrogen atmosphere. Bi2Te3 did not contact with copper samples during annealing. After that, the samples were bent and grain boundary cracks were formed (with the depth about 10–500 μm). Experiment showed that silver accelerates the embrittlement in the contrast to iron. The cracks in the silver–copper alloys were deeper than in the iron–copper ones. It was assumed that the depth of cracks is equal to the penetration depth. The reasons for this phenomenon were discussed in terms of the impurities effect on the grain boundary segregation.


Bismuth Auger Electron Spectroscopy Bi2Te3 Penetration Rate Bismuth Telluride 


  1. 1.
    Nicholas MG, Old CF (1979) J Mater Sci 14:1. doi: 10.1007/BF01028323 CrossRefGoogle Scholar
  2. 2.
    Glikman EE, Goryunov YV, Ledovskaya IY (1979) Sov Mater Sci 15:446CrossRefGoogle Scholar
  3. 3.
    Joseph B, Barbier F, Dagoury G, Aucouturier M (1998) Scr Mater 39:775CrossRefGoogle Scholar
  4. 4.
    Joseph B, Barbier F, Aucouturier M (1999) Scr Mater 40:893CrossRefGoogle Scholar
  5. 5.
    Marie N, Wolski K, Biscondi M (2000) Scr Mater 43:943CrossRefGoogle Scholar
  6. 6.
    Marie N, Wolski K, Biscondi M (2001) J Nucl Mater 296:282CrossRefGoogle Scholar
  7. 7.
    Wolski K, Laporte V (2008) Mater Sci Eng A 495:138CrossRefGoogle Scholar
  8. 8.
    Bokstein BS, Klinger LM, Apikhtina IV (1995) Mater Sci Eng A 203:373CrossRefGoogle Scholar
  9. 9.
    Zhevnenko SN, Vaganov DV, Gershman EI (2010) Def Dif Forum 301:439CrossRefGoogle Scholar
  10. 10.
    Divinski S, Lohmann M, Herzig C (2004) Acta Mater 52:3973CrossRefGoogle Scholar
  11. 11.
    Straumal BB, Baretzky B, Kogtenkova OA, Straumal AB, Sidorenko AS (2010) J Mater Sci 45:2057. doi: 10.1007/s10853-009-4014-6 CrossRefGoogle Scholar
  12. 12.
    Straumal BB, Kogtenkova OA, Straumal AB, Kuchyeyev YuO, Baretzky B (2010) J Mater Sci 45:4271. doi: 10.1007/s10853-010-4377-8 CrossRefGoogle Scholar
  13. 13.
    Baram M, Kaplan DW (2006) J Mater Sci 41:7775. doi: 10.1007/s10853-006-0897-7 CrossRefGoogle Scholar
  14. 14.
    Gale WF, Totemeier TC (eds) (2004) Smithells metals reference book, 8th edn. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Ludwig W, Bellet D (2000) Mater Sci Eng A 281:198CrossRefGoogle Scholar
  16. 16.
    Ludwig W, Pereiro-López E, Bellet D (2005) Acta Mater 53:151CrossRefGoogle Scholar
  17. 17.
    Hugo RC, Hoagland RG (2000) Acta Mater 48:1949CrossRefGoogle Scholar
  18. 18.
    Rabkin EI, Semenov VN, Shvindlerman LS, Straumal BB (1991) Acta Metall Mater 39:627CrossRefGoogle Scholar
  19. 19.
    Gupta D (2003) Interface Sci 11:7CrossRefGoogle Scholar
  20. 20.
    Menyhard M, Min Yan, Vitek V (1994) Acta Metall Mater 42:2783CrossRefGoogle Scholar
  21. 21.
    Divinski S, Lohmann M, Herzig C (2001) Acta Mater 49:249CrossRefGoogle Scholar
  22. 22.
    Monzen R, Echigo T (1999) Scr Mater 40:963CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. N. Zhevnenko
    • 1
  • D. V. Vaganov
    • 1
  • E. I. Gershman
    • 1
  1. 1.Department of Physical ChemistryNational University of Science and Technology “MISIS”MoscowRussia

Personalised recommendations