Advertisement

Journal of Materials Science

, Volume 46, Issue 12, pp 4318–4326 | Cite as

Dynamics of grain boundaries under applied mechanical stress

  • Dmitri A. Molodov
  • Tatiana Gorkaya
  • Günter Gottstein
IIB 2010

Abstract

Recent results of experimental research into stress-induced grain boundary migration in aluminum bicrystals are reported. Boundary migration under a shear stress was observed to be coupled to a lateral translation of the grains for planar symmetrical 〈100〉 tilt boundaries. This coupling proved to be the typical migration mode of any 〈100〉 tilt boundary, no matter whether low- or high-angle, low Σ CSL coincidence or non-coincidence boundary. The measured ratios of normal boundary motion to the tangential displacement of grains are in an excellent agreement with theoretical predictions. The migration-shear coupling is also observed for asymmetrical 〈100〉 boundaries. Measurements of the temperature dependence of coupled boundary migration revealed that there is a specific misorientation dependence of migration activation parameters. Grain boundaries can act during their motion under the applied stress as sources of lattice dislocations that leads to the generation and growth of new grains in the boundary region. The rate of stress-induced boundary migration decreases with increasing solute content in aluminum. Both the migration activation enthalpy and the pre-exponential mobility factor were found to increase with rising impurity concentration.

Keywords

Tilt Angle Misorientation Angle Boundary Migration Boundary Motion High Angle Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors express their gratitude to the Deutsche Forschungsgemeinschaft for financial support (Grant MO 848/10-2).

References

  1. 1.
    Haslam A, Moldovan D, Yamakov V, Wolf D, Phillpot S, Gleiter H (2003) Acta Mater 51:2112CrossRefGoogle Scholar
  2. 2.
    Farkas D, Frøseth A, Van Swygenhoven H (2006) Scripta Mater 55:695CrossRefGoogle Scholar
  3. 3.
    Gianola GS, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H, Hemker KJ (2006) Acta Mater 54:2253CrossRefGoogle Scholar
  4. 4.
    Legros M, Gianola GS, Hemker KJ (2008) Acta Mater 56:3380CrossRefGoogle Scholar
  5. 5.
    Rupert TJ, Gianola DS, Gan Y, Hemker KJ (2009) Science 326:1686CrossRefGoogle Scholar
  6. 6.
    Mompiou F, Caillard D, Legros M (2009) Acta Mater 57:2198CrossRefGoogle Scholar
  7. 7.
    Read WT, Shockley W (1950) Phys Rev 78:275CrossRefGoogle Scholar
  8. 8.
    Washburn J, Parker ER (1952) Trans AIME 194:1076Google Scholar
  9. 9.
    Li CH, Edwards EH, Washburn J, Parker ER (1953) Acta Metall 1:223CrossRefGoogle Scholar
  10. 10.
    Bainbridge DW, Li CH, Edwards EH (1954) Acta Metall 2:322CrossRefGoogle Scholar
  11. 11.
    Watanabe T, Kimura SI, Karashima S (1984) Philos Mag A 49:845CrossRefGoogle Scholar
  12. 12.
    Horiuchi R, Fukutomi H, Takahashi T (1987) In: Ishida Y (ed) Fundamentals of diffusion bonding. Elsevier, Amsterdam, p 347Google Scholar
  13. 13.
    Fukutomi H, Kamijo T (1985) Scripta Metall 19:195CrossRefGoogle Scholar
  14. 14.
    Fukutomi H, Iseki T, Endo T, Kamijo T (1991) Acta Metall Mater 39:1445CrossRefGoogle Scholar
  15. 15.
    Sheikh-Ali AD, Valiev RZ (1990) Phys Status Solidi (a) 117:429CrossRefGoogle Scholar
  16. 16.
    Sheikh-Ali AD, Lavrentyev FF, YuG Kazarov (1997) Acta Mater 45:4505CrossRefGoogle Scholar
  17. 17.
    Sheikh-Ali AD, Szpunar JA (1998) Mater Sci Eng A245:49Google Scholar
  18. 18.
    Yoshida H, Yokoyama K, Shibata N, Ikuhara Y, Sakuma T (2004) Acta Mater 52:2349CrossRefGoogle Scholar
  19. 19.
    Cahn JW, Mishin Y, Suzuki A (2006) Philos Mag 86:3965CrossRefGoogle Scholar
  20. 20.
    Cahn JW, Mishin Y, Suzuki A (2006) Acta Mater 54:4953CrossRefGoogle Scholar
  21. 21.
    Caillard D, Mompiou F, Legros M (2009) Acta Mater 57:2390CrossRefGoogle Scholar
  22. 22.
    Mompiou F, Legros M, Caillard D (2010) Acta Mater 58:3676CrossRefGoogle Scholar
  23. 23.
    Suzuki A, Mishin Y (2005) Mater Sci Forum 502:157CrossRefGoogle Scholar
  24. 24.
    Ivanov VA, Mishin Y (2008) Phys Rev B 78:064106CrossRefGoogle Scholar
  25. 25.
    Zhang H, Du D, Srolovitz DJ (2008) Philos Mag 88:243CrossRefGoogle Scholar
  26. 26.
    Elsener A, Politano O, Derlet PM, Van Swygenhoven H (2009) Acta Mater 57:1988CrossRefGoogle Scholar
  27. 27.
    Molodov DA, Ivanov VA, Gottstein G (2007) Acta Mater 55:1843CrossRefGoogle Scholar
  28. 28.
    Molodov DA, Gorkaya T, Gottstein G (2007) Mater Sci Forum 558–559:927CrossRefGoogle Scholar
  29. 29.
    Gorkaya T, Molodov DA, Gottstein G (2009) Acta Mater 57:5396CrossRefGoogle Scholar
  30. 30.
    Gorkaya T, Burlet T, Molodov DA, Gottstein G (2010) Scripta Mater 63:633CrossRefGoogle Scholar
  31. 31.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Clarendon, OxfordGoogle Scholar
  32. 32.
    Cahn JW, Taylor JE (2004) Acta Mater 52:4887CrossRefGoogle Scholar
  33. 33.
    Kirch DM (2008) In Situ SEM investigation of individual and connected grain boundaries in aluminum. Cuvillier Verlag, GöttingenGoogle Scholar
  34. 34.
    Kirch DM, Jannot E, Barrales-Mora LA, Molodov DA, Gottstein G (2008) Acta Mater 56:4998CrossRefGoogle Scholar
  35. 35.
    Gottstein G, Molodov DA, Czubayko U, Shvindlerman LS (1995) J de Phys IV 5:89Google Scholar
  36. 36.
    Molodov DA, Czubayko U, Gottstein G, Shvindlerman LS (1998) Acta Mater 46:553CrossRefGoogle Scholar
  37. 37.
    Lücke K, Detert K (1957) Acta Metall 5:628CrossRefGoogle Scholar
  38. 38.
    Cahn JW (1962) Acta Metall 10:789CrossRefGoogle Scholar
  39. 39.
    Lücke K, Stüwe H (1963) In: Himmel L (ed) Recovery and recrystallization of metals. Interscience, New York, p 131Google Scholar
  40. 40.
    Surholt T, Molodov DA, Chr Herzig (1998) Acta Mater 46:5345CrossRefGoogle Scholar
  41. 41.
    Aleshin AN, Faulkner RG, Molodov DA, Shvindlerman LS (2002) Interface Sci 10:5CrossRefGoogle Scholar
  42. 42.
    Kurzydlowski K, Celinski Z, Grabski MM (1980) Res Mech 1:283Google Scholar
  43. 43.
    Celinski Z, Kurzydlowski K (1982) Res Mech 5:89Google Scholar
  44. 44.
    Hirth JP, Lothe J (1982) Theory of dislocations. Wiley, New YorkGoogle Scholar
  45. 45.
    Varin RA, Kurzydlowski K, Tangri K (1987) Mater Sci Eng 85:115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dmitri A. Molodov
    • 1
  • Tatiana Gorkaya
    • 1
  • Günter Gottstein
    • 1
  1. 1.Institute of Physical Metallurgy and Metal PhysicsRWTH Aachen UniversityAachenGermany

Personalised recommendations