Skip to main content
Log in

Evolution of the microstructure and mechanical properties of eutectic Fe30Ni20Mn35Al15

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The microstructure of the eutectic alloy Fe30Ni20Mn35Al15 (in at.%) was modified by cooling at different rates from 1623 K, i.e., above the eutectic temperature. The lamellar spacing decreased with increasing cooling rate, and in water-quenched specimens lamellae widths of ~100 nm were obtained. The orientation relationship between the fcc and B2 lamellae was found to be sensitive to the cooling rate. In a drop-cast alloy the Kurdjumov–Sachs orientation relationship dominated, whereas the orientation relationship in an arc-melted alloy with a faster cooling rate was \( {\text{fcc}}\left( {\bar{1}12} \right)//{\text{B2}}\left( {0 1 1} \right);\;{\text{fcc}}\left[ {1\bar{1}1} \right]//{\text{B2 }}\left[ {1\bar{1}1} \right] \,{\text{and}}\,{\text{fcc}}\left( {0\bar{1}1} \right)//{\text{B2}}\left( {00 1} \right);{\text{ fcc}}\left[ {0 1 1} \right]//{\text{B2}}\left[ {\bar{1}\bar{1}0} \right] \). The hardness increased with microstructural refinement, obeying a Hall–Petch-type relationship. The strength of the alloy decreased significantly above 600 K due to softening of the B2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liao YF, Baker I (2008) Mater Charact 59(11):1546

    Article  CAS  Google Scholar 

  2. Liao Y, Baker I (2010) Mater Sci Eng A (submitted)

  3. Liu CT, Maziasz PJ (1998) Intermetallics 6(7–8):653

    Article  CAS  Google Scholar 

  4. Ramanujan RV, Maziasz PJ, Liu CT (1996) Acta Mater 44(7):2611

    Article  CAS  Google Scholar 

  5. Maruyama K, Yamada N, Sato H (2001) Mater Sci Eng A 319:360

    Article  Google Scholar 

  6. Huang L, Liaw PK, Liu CT (2007) Metall Mater Trans A 38A(13):2290

    Article  CAS  Google Scholar 

  7. Umakoshi Y, Nakano T, Yamane T (1992) Mater Sci Eng A 152(1–2):81

    Google Scholar 

  8. Liu CT, Schneibel JH, Maziasz PJ, Wright JL, Easton DS (1996) Intermetallics 4(6):429

    Article  CAS  Google Scholar 

  9. Umeda H, Kishida K, Inui H, Yamaguchi M (1997) Mater Sci Eng A 240:336

    Article  Google Scholar 

  10. Wittmann M, Baker I, Munroe PR (2004) Philos Mag 84(29):3169

    Article  CAS  Google Scholar 

  11. Bain EC, Dunkirk NY (1924) Trans Am Inst Min Metall Petrol Eng 70:22

    Google Scholar 

  12. Chen SK, Wan CM, Byrne JG (1990) Scr Metall Mater 24(11):2139

    Article  CAS  Google Scholar 

  13. Baker I, Gaydosh DJ (1987) Mater Sci Eng 96:147

    Article  CAS  Google Scholar 

  14. Ball A, Smallman RE (1966) Acta Metall Mater 14(10):1349

    Article  CAS  Google Scholar 

  15. Chadwick GA (1963) Prog Mater Sci 12(2):99

    Article  Google Scholar 

  16. Porter DA, Easterling KE (1992) Phase transformation in metals and alloys. CRC Press, New York

    Google Scholar 

  17. Bei H, George EP (2005) Acta Mater 53(1):69

    Article  CAS  Google Scholar 

  18. Kaiden H, Durbin SD, Yoshikawa A, Lee JH, Sugiyama K, Fukuda T (2002) J Alloy Compd 336(1–2):259

    Article  CAS  Google Scholar 

  19. Croker MN, Mcparlan M, Baragar D, Smith RW (1975) J Cryst Growth 29(1):85

    Article  CAS  Google Scholar 

  20. Thall BM, Chalmers B (1950) J I Met 77(1):79

    CAS  Google Scholar 

  21. Elwazri AM, Wanjara P, Yue S (2005) Mater Sci Eng A 404(1–2):91

    Google Scholar 

  22. Dollar M, Bernstein IM, Thompson AW (1988) Acta Metall Mater 36(2):311

    Article  CAS  Google Scholar 

  23. Ray KK, Mondal D (1991) Acta Metall Mater 39(10):2201

    Article  CAS  Google Scholar 

  24. He YL, Godet S, Jonas JJ (2005) Acta Mater 53(4):1179

    Article  CAS  Google Scholar 

  25. Smith E, Barnby JT (1967) Metal Sci J 1:56

    Article  CAS  Google Scholar 

  26. Stroh AN (1954) Proc R Soc Lond A 223:404

    Article  Google Scholar 

  27. Misra A, Gibala R (1999) Metall Mater Trans A 30(4):991

    Article  Google Scholar 

  28. Shen Z, Wagoner RH, Clark WAT (1988) Acta Metall Mater 36(12):3231

    Article  CAS  Google Scholar 

  29. Misra A, Gibala R (2000) Intermetallics 8(9–11):1025

    Article  CAS  Google Scholar 

  30. Hertzberg RW (1967) Composite materials formed by the directional solidification of eutectic alloys. Addison-Wesley, London

    Google Scholar 

  31. Fuchs GE (1997) Metall Mater Trans A 28(12):2543

    Article  Google Scholar 

  32. Baker I (1995) Mater Sci Eng A 193:1

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Easo George and Dr. Hongbin Bei of the Oak Ridge National Laboratory, Oak Ridge, TN., for providing the drop-cast ingots. This research was supported by National Science Foundation Grant DMR 0552380 and DMR 0905229. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Y., Baker, I. Evolution of the microstructure and mechanical properties of eutectic Fe30Ni20Mn35Al15 . J Mater Sci 46, 2009–2017 (2011). https://doi.org/10.1007/s10853-010-5197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-5197-6

Keywords

Navigation