Journal of Materials Science

, Volume 46, Issue 7, pp 2009–2017 | Cite as

Evolution of the microstructure and mechanical properties of eutectic Fe30Ni20Mn35Al15



The microstructure of the eutectic alloy Fe30Ni20Mn35Al15 (in at.%) was modified by cooling at different rates from 1623 K, i.e., above the eutectic temperature. The lamellar spacing decreased with increasing cooling rate, and in water-quenched specimens lamellae widths of ~100 nm were obtained. The orientation relationship between the fcc and B2 lamellae was found to be sensitive to the cooling rate. In a drop-cast alloy the Kurdjumov–Sachs orientation relationship dominated, whereas the orientation relationship in an arc-melted alloy with a faster cooling rate was \( {\text{fcc}}\left( {\bar{1}12} \right)//{\text{B2}}\left( {0 1 1} \right);\;{\text{fcc}}\left[ {1\bar{1}1} \right]//{\text{B2 }}\left[ {1\bar{1}1} \right] \,{\text{and}}\,{\text{fcc}}\left( {0\bar{1}1} \right)//{\text{B2}}\left( {00 1} \right);{\text{ fcc}}\left[ {0 1 1} \right]//{\text{B2}}\left[ {\bar{1}\bar{1}0} \right] \). The hardness increased with microstructural refinement, obeying a Hall–Petch-type relationship. The strength of the alloy decreased significantly above 600 K due to softening of the B2 phase.


Orientation Relationship Fast Cool Rate Lamellar Spacing Slip Vector Chinese Script 



The authors are grateful to Dr. Easo George and Dr. Hongbin Bei of the Oak Ridge National Laboratory, Oak Ridge, TN., for providing the drop-cast ingots. This research was supported by National Science Foundation Grant DMR 0552380 and DMR 0905229. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the U.S. Government.


  1. 1.
    Liao YF, Baker I (2008) Mater Charact 59(11):1546CrossRefGoogle Scholar
  2. 2.
    Liao Y, Baker I (2010) Mater Sci Eng A (submitted)Google Scholar
  3. 3.
    Liu CT, Maziasz PJ (1998) Intermetallics 6(7–8):653CrossRefGoogle Scholar
  4. 4.
    Ramanujan RV, Maziasz PJ, Liu CT (1996) Acta Mater 44(7):2611CrossRefGoogle Scholar
  5. 5.
    Maruyama K, Yamada N, Sato H (2001) Mater Sci Eng A 319:360CrossRefGoogle Scholar
  6. 6.
    Huang L, Liaw PK, Liu CT (2007) Metall Mater Trans A 38A(13):2290CrossRefGoogle Scholar
  7. 7.
    Umakoshi Y, Nakano T, Yamane T (1992) Mater Sci Eng A 152(1–2):81Google Scholar
  8. 8.
    Liu CT, Schneibel JH, Maziasz PJ, Wright JL, Easton DS (1996) Intermetallics 4(6):429CrossRefGoogle Scholar
  9. 9.
    Umeda H, Kishida K, Inui H, Yamaguchi M (1997) Mater Sci Eng A 240:336CrossRefGoogle Scholar
  10. 10.
    Wittmann M, Baker I, Munroe PR (2004) Philos Mag 84(29):3169CrossRefGoogle Scholar
  11. 11.
    Bain EC, Dunkirk NY (1924) Trans Am Inst Min Metall Petrol Eng 70:22Google Scholar
  12. 12.
    Chen SK, Wan CM, Byrne JG (1990) Scr Metall Mater 24(11):2139CrossRefGoogle Scholar
  13. 13.
    Baker I, Gaydosh DJ (1987) Mater Sci Eng 96:147CrossRefGoogle Scholar
  14. 14.
    Ball A, Smallman RE (1966) Acta Metall Mater 14(10):1349CrossRefGoogle Scholar
  15. 15.
    Chadwick GA (1963) Prog Mater Sci 12(2):99CrossRefGoogle Scholar
  16. 16.
    Porter DA, Easterling KE (1992) Phase transformation in metals and alloys. CRC Press, New YorkGoogle Scholar
  17. 17.
    Bei H, George EP (2005) Acta Mater 53(1):69CrossRefGoogle Scholar
  18. 18.
    Kaiden H, Durbin SD, Yoshikawa A, Lee JH, Sugiyama K, Fukuda T (2002) J Alloy Compd 336(1–2):259CrossRefGoogle Scholar
  19. 19.
    Croker MN, Mcparlan M, Baragar D, Smith RW (1975) J Cryst Growth 29(1):85CrossRefGoogle Scholar
  20. 20.
    Thall BM, Chalmers B (1950) J I Met 77(1):79Google Scholar
  21. 21.
    Elwazri AM, Wanjara P, Yue S (2005) Mater Sci Eng A 404(1–2):91Google Scholar
  22. 22.
    Dollar M, Bernstein IM, Thompson AW (1988) Acta Metall Mater 36(2):311CrossRefGoogle Scholar
  23. 23.
    Ray KK, Mondal D (1991) Acta Metall Mater 39(10):2201CrossRefGoogle Scholar
  24. 24.
    He YL, Godet S, Jonas JJ (2005) Acta Mater 53(4):1179CrossRefGoogle Scholar
  25. 25.
    Smith E, Barnby JT (1967) Metal Sci J 1:56CrossRefGoogle Scholar
  26. 26.
    Stroh AN (1954) Proc R Soc Lond A 223:404CrossRefGoogle Scholar
  27. 27.
    Misra A, Gibala R (1999) Metall Mater Trans A 30(4):991CrossRefGoogle Scholar
  28. 28.
    Shen Z, Wagoner RH, Clark WAT (1988) Acta Metall Mater 36(12):3231CrossRefGoogle Scholar
  29. 29.
    Misra A, Gibala R (2000) Intermetallics 8(9–11):1025CrossRefGoogle Scholar
  30. 30.
    Hertzberg RW (1967) Composite materials formed by the directional solidification of eutectic alloys. Addison-Wesley, LondonGoogle Scholar
  31. 31.
    Fuchs GE (1997) Metall Mater Trans A 28(12):2543CrossRefGoogle Scholar
  32. 32.
    Baker I (1995) Mater Sci Eng A 193:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations